• Title/Summary/Keyword: Impact angle

Search Result 742, Processing Time 0.024 seconds

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Risk Factors for Prevertebral Soft Tissue Swelling Following Single-level Anterior Cervical Spine Surgery

  • Junsang Park;Sang Mook Kang;Yu Deok Won;Myung-Hoon Han;Jin Hwan Cheong;Byeong-Jin Ha;Je Il Ryu
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.716-725
    • /
    • 2023
  • Objective : Anterior cervical spine surgery (ACSS) is a common surgical procedure used to treat cervical spinal degenerative diseases. One of the complications associated with ACSS is prevertebral soft tissue swelling (PSTS), which can result in airway obstruction, dysphagia, and other adverse outcomes. This study aims to investigate the correlation between various cervical sagittal parameters and PSTS following single-level ACSS, as well as to identify independent risk factors for PSTS. Methods : A retrospective study conducted at a single institution. The study population included all patients who underwent single-level ACSS between January 2014 and December 2022. Patients with a history of cervical spine surgery or trauma were excluded from the study. The presence and severity of PSTS was assessed by reviewing pre- and postoperative imaging studies. The potential risk factors for PSTS that were examined include patient age, sex, body mass index, tobacco use, comorbidities, serum albumin levels, operative time, implant type, implanted level, and various cervical spine sagittal parameters. Multivariate linear regression analysis was performed to identify the independent risk factors for PSTS. Results : A total of 62 consecutive patients who underwent single-level ACSS over a 8-year period at a single institution were enrolled in this study. Only preoperative segmental angle showed positive correlation with PSTS among various cervical spine sagittal parameters (r=0.36, p=0.005). Artificial disc replacement showed a negative correlation with PSTS (β=-0.38, p=0.002), whereas the use of demineralized bone matrix (DBM) had a positive impact on PSTS (β=0.33, p=0.009). We found that male sex, lower preoperative serum albumin, and implantation of upper cervical level (above C5) were independent predictors for PSTS after single-level ACSS (β=1.21; 95% confidence interval [CI], 0.27 to 2.15; p=0.012; β=-1.63; 95% CI, -2.91 to -0.34; p=0.014; β=1.44; 95% CI, 0.38 to 2.49; p=0.008, respectively). Conclusion : Our study identified male sex, lower preoperative serum albumin levels, and upper cervical level involvement as independent risk factors for PSTS after single-level ACSS. These findings can help clinicians monitor high-risk patients and take preventive measures to reduce complications. Further research with larger sample sizes and prospective designs is needed to validate these findings.

Comparative Analysis of Two Pedobarography Systems (두 족저압 측정장비의 비교 분석)

  • Ho Won Kang;Soomin Pyeun;Dae-Yoo Kim;Yun Jae Cho;Min Gyu Kyung;Dong Yeon Lee
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: Foot pressure measurement devices are used widely in clinical settings for plantar pressure assessments. Despite the availability of various devices, studies evaluating the inter-device reliability are limited. This study compared plantar pressure measurements obtained from HR Mat (Tekscan Inc.) and EMED-n50 (Novel GmbH). Materials and Methods: The study involved 38 healthy male volunteers. The participants were categorized into two groups based on the Meary's angle in standing foot lateral radiographs: those with normal feet (angles ranging from -4° to 4°) and those with mild flatfeet (angles from -8° to -15°). The static and dynamic plantar pressures of the participants were measured using HR Mat and EMED-n50. The reliability of the contact area and mean force was assessed using the interclass correlation coefficient (ICC). Furthermore, the differences in measurements between the two devices were examined, considering the presence of mild flatfoot. Results: The ICC values for the contact area and mean force ranged from 0.703 to 0.947, indicating good-to-excellent reliability across all areas. EMED-n50 tended to record higher contact areas than HR Mat. The mean force was significantly higher in the forefoot region when measured with EMED-n50, whereas, in the hindfoot region, this difference was observed only during static measurements with HR Mat. Participants with mild flatfeet exhibited significantly higher contact areas in the midfoot region for both devices, with no consistent differences in the other parameters. Conclusion: The contact area and mean force measurements of the HR Mat and EMED-n50 showed high reliability. On the other hand, EMED-n50 tended to record higher contact areas than HR Mat. In cases of mild flatfoot, an increase in contact area within the midfoot region was observed, but no consistent impact on the differences between the two devices was evident.

The Impact of Emotion on Focused Attention in a Flanker Task (수반자극과제에서 정서가 초점주의에 미치는 영향)

  • Park, Tae-Jin;Park, Sun-Hee
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.4
    • /
    • pp.385-404
    • /
    • 2011
  • We examined how emotional background stimuli influence focused attention in a flanker task. An IAPS picture was presented for 1,000ms in advance, then a target and two flanker letters were presented against the IAPS picture for 200ms(Experiment 1). The flanking stimuli were simultaneously presented on the left and right sides of the target stimulus with distance of $0.5^{\circ}C$, $1^{\circ}C$, or $1.5^{\circ}C$ visual angle. We investigated the flanker compatibility effect that identification of target would be faster when they were flanked by identical(compatible) stimuli than when they were flanked by different(incompatible) stimuli. Results of Experiment 1 revealed that the flanker compatibility effect depended not only on the distance of flankers but also on the valence of a background IAPS pictures. Positive and neutral pictures showed distance effect that the flanker compatibility effect was decreased as the farther the distance was, while negative pictures showed no di stance effect. Positive and neutral pictures showed compatibility effects at all distance conditions, but negative pictures didn't showed compatibility effect at $1.5^{\circ}C$ distance condition. In Experiment 2, the SOA(Stimulus Onset Asynchrony) between the picture and the stimuli of flanker task was manipulated. The flanking stimuli were presented simultaneously on the left and right sides of the target stimulus with a distance of either $0.5^{\circ}C$ or $1.5^{\circ}C$ visual angle. The results of Experiment 2 showed that flanker compatibility effect depends on SOA. At long SOA(2800ms), negative pictures showed no distance effect, but positive or neutral pictures did. All valence conditions of background pictures showed compatibility effects at $0.5^{\circ}C$ distance condition, but didn't showed compatibility effect at $1.5^{\circ}C$ distance condition. At short SOA(100ms), all valence conditions of background pictures showed distance effect, and showed compatibility effects with the exception of negative background pictures at $1.5^{\circ}C$ distance condition. These findings suggest that the scope of visual attention becomes narrower when viewing negative emotional stimuli and becomes broadened when viewing positive emotional stimuli. The narrowed scope of attention in negative emotion lasts longer, while the broaden scope of attention in positive emotion lasts shorter.

  • PDF

Predictors of Success of Selective Laser Trabeculoplasty Adjusted for Intraocular Pressure Variations (단안 선택적 레이저섬유주성형술에서 안압 변동을 보정한 성공예측인자의 분석)

  • Lee, Jun Seok;Lee, Chong Eun;Seo, Sam;Lee, Kyoo Won
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1166-1172
    • /
    • 2018
  • Purpose: To investigate the efficacy, and identify predictors of success of selective laser trabeculoplasty (SLT) in open-angle glaucoma (OAG) patients after adjusting for intraocular pressure (IOP) changes in the untreated fellow eye. Methods: This retrospective chart review included 52 eyes of 52 OAG patients who underwent SLT in one eye and were followed-up for at least 1 year after the procedure. The IOP was measured before the treatment, at 1, 2, and 3 months posttreatment, and every 3 months thereafter. To account for the possible influence of IOP fluctuations on laser outcomes, post-laser IOP values of the treated eye of each patient were also analyzed, after adjusting for IOP changes in the untreated fellow eye. Success was defined as an IOP decrease ${\geq}20%$ of the pretreatment IOP. The success rate was determined based on Kaplan-Meier survival analysis and factors predictive of success were analyzed using the Cox proportional hazard model. Results: The mean pretreatment IOP was $23.17{\pm}6.96mmHg$. The mean IOP reduction was $5.59{\pm}4.78mmHg$ (29.7%) and the success rate was 65.4% at 1 year. The adjusted mean IOP reduction was $4.70{\pm}4.67mmHg$ (23.9%) and the adjusted success rate was 53.9%. Pretreatment IOP was associated with SLT success; the higher the pretreatment IOP, the greater the post-laser IOP reduction (p = 0.025). Age and mean deviation index did not show a significant association with SLT success (p = 0.066 and p = 0.464, respectively). Conclusions: SLT is a safe and effective alternative method of IOP reduction in OAG patients. Herein, pretreatment IOP was the only factor significantly associated with SLT success. IOP fluctuations of the untreated eye should be considered for a better understanding of the impact of treatment.

Feasibility of Mixed-Energy Partial Arc VMAT Plan with Avoidance Sector for Prostate Cancer (전립선암 방사선치료 시 회피 영역을 적용한 혼합 에너지 VMAT 치료 계획의 평가)

  • Hwang, Se Ha;NA, Kyoung Su;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.17-29
    • /
    • 2020
  • Purpose: The purpose of this work was to investigate the dosimetric impact of mixed energy partial arc technique on prostate cancer VMAT. Materials and Methods: This study involved prostate only patients planned with 70Gy in 30 fractions to the planning target volume (PTV). Femoral heads, Bladder and Rectum were considered as oragan at risk (OARs). For this study, mixed energy partial arcs (MEPA) were generated with gantry angle set to 180°~230°, 310°~50° for 6MV arc and 130°~50°, 310°~230° for 15MV arc. Each arc set the avoidance sector which is gantry angle 230°~310°, 50°~130° at first arc and 50°~310° at second arc. After that, two plans were summed and were analyzed the dosimetry parameter of each structure such as Maximum dose, Mean dose, D2%, Homogeneity index (HI) and Conformity Index (CI) for PTV and Maximum dose, Mean dose, V70Gy, V50Gy, V30Gy, and V20Gy for OARs and Monitor Unit (MU) with 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC plan. Results: In MEPA, the maximum dose, mean dose and D2% were lower than 6MV 1 ARC plan(p<0.0005). However, the average difference of maximum dose was 0.24%, 0.39%, 0.60% (p<0.450, 0.321, 0.139) higher than 6MV, 10MV, 15MV 2 ARC plan, respectively and D2% was 0.42%, 0.49%, 0.59% (p<0.073, 0.087, 0.033) higher than compared plans. The average difference of mean dose was 0.09% lower than 10MV 2 ARC plan, but it is 0.27%, 0.12% (p<0.184, 0.521) higher than 6MV 2 ARC, 15MV 2 ARC plan, respectively. HI was 0.064±0.006 which is the lowest value (p<0.005, 0.357, 0.273, 0.801) among the all plans. For CI, there was no significant differences which were 1.12±0.038 in MEPA, 1.12±0.036, 1.11±0.024, 1.11±0.030, 1.12±0.027 in 6MV 1 ARC, 6MV, 10MV, 15MV 2 ARC, respectively. MEPA produced significantly lower rectum dose. Especially, V70Gy, V50Gy, V30Gy, V20Gy were 3.40, 16.79, 37.86, 48.09 that were lower than other plans. For bladder dose, V30Gy, V20Gy were lower than other plans. However, the mean dose of both femoral head were 9.69±2.93, 9.88±2.5 which were 2.8Gy~3.28Gy higher than other plans. The mean MU of MEPA were 19.53% lower than 6MV 1 ARC, 5.7% lower than 10MV 2 ARC respectively. Conclusion: This study for prostate radiotherapy demonstrated that a choice of MEPA VMAT has the potential to minimize doses to OARs and improve homogeneity to PTV at the expense of a moderate increase in maximum and mean dose to the femoral heads.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI (GK-2A/AMI와 융합을 통한 GOCI-II 해색 산출물 정확도 개선 가능성)

  • Lee, Kyeong-Sang;Ahn, Jae-Hyun;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1295-1305
    • /
    • 2021
  • Satellite-derived ocean color products are required to effectively monitor clear open ocean and coastal water regions for various research fields. For this purpose, accurate correction of atmospheric effect is essential. Currently, the Geostationary Ocean Color Imager (GOCI)-II ground segment uses the reanalysis of meteorological fields such as European Centre for Medium-Range Weather Forecasts (ECMWF) or National Centers for Environmental Prediction (NCEP) to correct gas absorption by water vapor and ozone. In this process, uncertainties may occur due to the low spatiotemporal resolution of the meteorological data. In this study, we develop water vapor absorption correction model for the GK-2 combined GOCI-II atmospheric correction using Advanced Meteorological Imager (AMI) total precipitable water (TPW) information through radiative transfer model simulations. Also, we investigate the impact of the developed model on GOCI products. Overall, the errors with and without water vapor absorption correction in the top-of-atmosphere (TOA) reflectance at 620 nm and 680 nm are only 1.3% and 0.27%, indicating that there is no significant effect by the water vapor absorption model. However, the GK-2A combined water vapor absorption model has the large impacts at the 709 nm channel, as revealing error of 6 to 15% depending on the solar zenith angle and the TPW. We also found more significant impacts of the GK-2 combined water vapor absorption model on Rayleigh-corrected reflectance at all GOCI-II spectral bands. The errors generated from the TOA reflectance is greatly amplified, showing a large error of 1.46~4.98, 7.53~19.53, 0.25~0.64, 14.74~40.5, 8.2~18.56, 5.7~11.9% for from 620 nm to 865 nm, repectively, depending on the SZA. This study emphasizes the water vapor correction model can affect the accuracy and stability of ocean color products, and implies that the accuracy of GOCI-II ocean color products can be improved through fusion with GK-2A/AMI.