• Title/Summary/Keyword: Impact absorber

Search Result 81, Processing Time 0.025 seconds

Shape and Orifice Optimization of Airbag Systems for UAV Parachute Landing

  • Alizadeh, Masoud;Sedaghat, Ahmad;Kargar, Ebrahim
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.335-343
    • /
    • 2014
  • An airbag is an important safety system and is well known as a safety system in cars during an accident. Airbag systems are also used as a shock absorber for UAVs to assist with rapid parachute landings. In this paper, the dynamics and gas dynamics of five airbag shapes, cylindrical, semi-cylindrical, cubic, and two truncated pyramids, were modelled and simulated under conditions of impact acceleration lower than $4m/s^2$ to avoid damage to the UAV. First, the responses of the present modelling were compared and validated against airbag test results under the same conditions. Second, for each airbag shape under the same conditions, the responses in terms of pressure, acceleration, and emerging velocity were investigated. Third, the performance of a pressure relief valve is compared with a fixed-area orifice implemented in the air bag. For each airbag shape under the same conditions, the optimum area of the fixed orifice was determined. By examining the response of pressure and acceleration of the airbag, the optimum shape of the airbag and the venting system is suggested.

Modified pendular vibration absorber for structures under base excitation

  • Pezo Eliot, Z.;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.161-172
    • /
    • 2018
  • The passive control of structures using a pendulum tuned mass damper has been extensively studied in the technical literature. As the frequency of the pendulum depends only on its length and the acceleration of gravity, to tune the frequency of the pendulum with that of the structure, the pendulum length is the only design variable. However, in many cases, the required length and the space necessary for its installation are not compatible with the design. In these cases, one can replace the classical pendulum by a virtual pendulum which consists of a mass moving over a curved surface, allowing thus for a greater flexibility in the absorber design, since the length of the pendulum becomes irrelevant and the shape of the curved surface can be optimized. A mathematical model for a building with a pendular tuned mass damper and a detailed parametric analysis is conducted to study the influence of this device on the nonlinear oscillations and stability of the main system under harmonic and seismic base excitation. In addition to the circular profiles, different curved surfaces with softening and hardening characteristics are analyzed. Also, the influence of impact on energy dissipation is considered. A detailed parametric analysis is presented showing that the proposed damper can not only reduce sharply the displacements, and consequently the internal forces in the main structure, but also the accelerations, increasing user comfort. A review of the relevant aspects is also presented.

Fire at an Indoor Shooting Range in Busan II. Causes and Fire Safety Measures (부산 실내사격장 화재 II. 원인 및 화재안전대책)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.92-97
    • /
    • 2010
  • Fire simulation by using a computational fluid dynamics model and examination of the fires at indoor shooting ranges broken out in the past were conducted, to presume causes of the fire at the indoor shooting range in Busan and suggest fire safety measures. On-site investigations and shooting tests on unburned gunpowder were also carried out. No trace of the muzzle spark and spark at the bullet trap was found in CCTV footage, and the impact of a stray bullet failed to ignite gunpowder. Cigarette was therefore presumed to be the most likely source of ignition among the potential sources. It appeared that the explosion in the shooting area was caused by violent burning of the polyurethane sound absorber and unburned gunpowder accumulated on it. The fire safety measures include prohibit of use of profile polyurethane sound absorber, removal of steel components from bullet trap, clean up and control of unburned gunpowder, etc.

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

An Experimental Study on the Safety Performance of the Rear Safety Guard with Air Bag for Truck (화물차량용 에어백 후부안전판 안전성능에 대한 실험적 연구)

  • Park, In-Song;Yun, Kyung-Won;Park, Kwang-Jong;Kim, Hyo-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.10-19
    • /
    • 2014
  • Despite the movement of safe traffic by the Korean government to reduce deaths in traffic accidents, the casualties increase year by year. In particular, more and more accidents and casualties are reported from car collisions from the back of the vehicles parked for managing traffic accidents on the road, cleaning main roads and medial strips, repairing roads. In order to response to these accidents, the government should take protective measures for road users. In the last decade, seventy-one cases have been reported to occur during highway repair and maintenance. As a result, eight persons were killed and seventy-six were injured, showing the high death rate of 11.3 percent. Therefore, it seems urgent to take some actions against it. The United States and European countries legislate that vehicles of road repair and maintenance should be mandatorily equipped with shock absorber at the back. Korea, however, does not have such legislative measures, which are needed at this time to protect workers on the road. This study compares the performance of the traditional shock absorber for road maintenance vehicles with that of the rear safety guard using air bag, manufactured in accordance with related laws in Korea. Based on the results of the 60km/h rear collision test, this paper proposes improvements in related laws and regulations in an attempt to reduce casualties.

Prediction to Shock Absorption Energy of an Aluminum Honeycomb (알루미늄 허니콤의 충격 에너지 흡수 특성 예측)

  • Kim, Hyun-Duk;Lee, Hyuk-Hee;Hwang, Do-Soon;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-399
    • /
    • 2011
  • The purpose of this paper is to predict the shock absorbing characteristics of the aluminum honeycomb in a lunar lander. Aluminum honeycomb has been used for shock absorbers of lunar lander due to its characteristics such as light weight, high energy absorption efficiency and applicability under severe space environments. Crush strength of the honeycomb should have strength to endure during shock energy absorbing process. In this paper, the crush strength, which depends on the shape of honeycomb and impact velocity, is estimated using FEM. Ls-dyna is used for finite element analysis of the honeycomb shock absorber. The unit cells of the honeycomb shape are modeled and used for the finite element analysis. Energy absorption characteristics are decided considering several conditions such as impact velocity, foil thickness and branch angle of the honeycomb.

Axiomatic Approach for desing Appraisement and Development DVD (II) (DVD 설계평가 및 개선을 위한 공리적 접근 (II))

  • Moon, Yong-Rak;Cha, Sung-Woon;Heo, Bo-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • In order to execute the major role as the high density large capacity data storage device, which is one of the major characteristics of DVD(Digital Versatile Disk), there must be a method to effectively absorb the external impact or internal vibration. The DVD which has been developed until now tries to control two different types of vibrations, using only one absorber. But this goes against the independence Axiom of Axiomatic Approach which makes the design to be coupled. And in fat most of the malfunctions occurring during DVD data input/output is due to impact or vibration. Therefore in this paper, the vibration absorption system and operation reliability of DVD will be evaluated with the Axiomatic Approach and plans and feasibility to design an improved vibration absorption system will be provided also based on the Axiomatic Approach.

  • PDF

Designing FMH Impact-Absorbing Structure by Using Subcomponent Collapse Simulation (단품 압궤 시뮬레이션을 이용한 FMH 충격흡수부재의 설계방법에 관한 연구)

  • Kim, Ji-Hun;Jun, In-Ki;Choi, Jae-Min;Kim, Sung-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1113-1118
    • /
    • 2010
  • It is requested that the interior compartment of a passenger vehicle must be satisfied with the FMVSS201U regulation, FMH impact test. It is needed the design methodology to find the appropriate structure about the FMH impact. When designing the impact-absorbing structure for the FMH impact test, it is to be noted that the impact absorber must have different performance considering the stiffness of the vehicle as the impact position and approach angle of FMH. In this study, an efficient design methodology was developed by using subcomponent collapse simulation instead of conducting full-vehicle simulation, thereby reducing the time and resources spent. Further, this unit-model simulation helps optimize the impact absorbing structure.

A study on Analysis of Impact Deceleration Characteristics of Railway Freight Car (1차원 해석방법을 이용한 화차의 충돌가속도 분석)

  • Son, Seung Wan;Jung, Hyun Seung;Hwang, Jun Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • This study examined the problems of existing vehicles to propose alternatives to improve the crashworthiness of railway freight cars through collision acceleration analysis using a one-dimensional collision analysis method. A collision scenario of railway shunting and crash accidents was selected from the collision accident cases and international standards. A one-dimensional collision simulation using LS-DYNA was performed according to those scenarios. As a result, the acceleration level of the freight wagon was calculated to be under 2g and was predicted to meet the EN 12663 standard in the shunting situation. On the other hand, the result of crash simulation with an impact velocity between 10 and 15 km/h revealed the shock absorber capacity of the railway coupler to be insufficient in a crash situation, resulting in increased acceleration, and carbody deformation could be predicted. As a method of improving the crashworthiness, a deformation tube-type energy absorber was applied to the coupler system, and collision analysis was performed again with new energy absorption strategy. Overall, the simulation showed that the acceleration level was decreased by 12% of the conventional freight-car energy absorption system.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.