• Title/Summary/Keyword: Impact Tester

Search Result 118, Processing Time 0.024 seconds

Toughening of PLA stereocomplex by Impact modifiers (충격보강제에 의한 PLA stereocomplex의 강인화 연구)

  • Nam, Byeong-Uk;Lee, Bum-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.919-925
    • /
    • 2012
  • We tried to blend PLLA and PDLA at overall compositions to form PLA stereocomplexes (SC). The presence of the SC crystalline phase in the PLLA matrix was verified by differential scanning calorimetry (DSC). As a result, a various PDLA composition of the PLA SC blends can influence PLA SC formation. And the largest amount of PLA SC crystallites was formed when PLLA/PDLA ratio is 50/50. In addition, we have tried to do PLA SC toughening with two impact modifiers in 92/8, 85/15 ratio of PLLA/PDLA to enhance the mechanical properties such as impact strength. Thermal and mechanical properties of PLA SC were investigated by DSC, HDT, Izod impact tester and UTM. PLA SC formation decreased when 10-20 wt% of Strong120 (impact modifier) was added. On the other hand, there is no effect on PLA SC formation when 10-20% of Elvaloy (impact modifier) was added. HDT values dramatically increased over $100^{\circ}C$ with the addition of PDLA. However, HDT decreased as Strong120 and Elvaloy content increased. Finally, we could find well balanced composition of toughened PLA SC with 10wt% of impact modifier in flexural modulus and impact strength.

A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact (저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

A Study on the Sliding/Impact Wear of a Nuclear Fuel Rod in Room Temperature Air:(I) Development of a Test Rig and Characteristic Analysis (상온 핵연료봉 미끄럼/충격 마멸특성연구:(I) 장치개발 및 특성분석)

  • Lee, Young-Ho;Lee, Kang-Hee;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1859-1863
    • /
    • 2007
  • A new type of a fretting wear tester has been designed and developed in order to simulate the actual vibration behavior of a nuclear fuel rod for springs/dimples in room temperature. When considering the actual contact condition between fuel rod and spring/dimple, if fretting wear progress due to the flow-induced vibration (FIV) under a specific normal load exerted on the fuel rod by the elastic deformation of the spring, the contacting force between the fuel rod and dimple that were located in the opposite side should be decreased. Consequently, the evaluation of developed spacer grids against fretting wear damage should be performed with the results of a cell unit experiments because the contacting force is one of the most important variables that influence to the fretting wear mechanism. Therefore, it is necessary to develop a new type of fretting test rig in order to simulate the actual contact condition. In this paper, the development procedure of a new fretting wear tester and its performance were discussed in detail.

  • PDF

Evaluation of Low Temperature Properties in EH36 Thick Steel Plate Welded Material by Instrumented Indentation Equipment (계장화 압입시험기를 이용한 EH36 후판 용접재의 저온특성 평가)

  • Kim, Gwi-Nam;Lee, Jong-Seok;Hyeon, Jang-Hwan;Jung, Yong-Gil;Huh, Sun-Chul
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.104-111
    • /
    • 2014
  • In this study, EH36 is thick steel plate, which welded by auto $CO_2$ gas welding machine, has been applied on offshore filed. The specimen was examined by indentation tester and it was measured for fracture toughness at $18^{\circ}C$, $0^{\circ}C$, $-20^{\circ}C$ and $-45^{\circ}C$ by low temperature chamber, respectively. The absorbed energy was got on same temperature by Charpy impact tester. The weld surface was observed for watch of changed crystalline structure by optical microscope, and fracture surface of impact test specimen were observed by scanning electron microscope(SEM).

Development of the Hydraulic Pressure Transducer System for Testing the Impact Energy of Hydraulic Breaker (유압 브레이커의 타격 에너지 측정을 위한 유압 변환장치 개발)

  • 이근호;이용범;정동수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.154-160
    • /
    • 2004
  • Hydraulic breaker of excavator has been used for the destruction and disassembling of buildings, crashing road pavement, breaking rocks at quaky and etc. The performance of breakers is evaluated their own destructive force and the number of impact by input hydraulic flow rate and pressure on the operating conditions. Because hydraulic breakers generate high impact energy, the accurate measurement of the impact force has been facing a technical challenge. In this study, the hydraulic pressure transducer system was developed based on the characteristics of pressure variation in closed vessel fur testing the impact energy. The hydraulic pressure transducer system is consisted with a hydraulic cylinder, main base, pressure & temperature sensors, LVDT, data acquisition system and etc. The developed hydraulic pressure transducer system was applied to measure the impact energy for hydraulic breaker. The measured impact force was 438.8 kgf.m within the designed impact force bounds. The developed hydraulic pressure transducer system as a simple tester could be applied to measure the impact force and the number of impact.

The Impact fracture Behaviors of Low Density LD Carbon/Carbon Composites by Drop Weight Impact Test (낙하 충격 시험에 의한 저밀도 2-D탄소/탄소 복합재의 충격파괴거동)

  • 주혁종;손종석
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In this study, the fracture behavior by low velocity impact damage and the tendencies of impact energy absorption were investigated. Low velocity impact tests were performed using a mini tower drop weight impact tester, and graphite powder, carbon black and milled carton fiber were chosen as additives. Addition of graphite powder increased the maximum load and maintained the stress long until the total penetration happened. At the content of 9 vol%, they showed the maximum of 42% improvement in impact strength compared composites containing no additives. At the test with low impact energy of 0.4 J, impact energy was consumed by delamination in the composite containing no additives, however, as graphite contents increased, the tendency of failure changed to the penetration of the specimen.

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.

Design and Impact Testing of Cylindrical Composite-Antenna-Structures having High Mechanical Performanc (기계적 특성이 우수한 원통형 복합재료 안테나의 설계 및 충격 실험)

  • Kim, Dong-Seop;Jo, Sang-Hyeon;Hwang, Un-Bong;Lee, Jung-Hui
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.35-38
    • /
    • 2005
  • The Objective of this work was to design Composite Antenna Structures (CAS) and investigate impact behavior of CAS which was various curvature. This term, CAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constants and tangent loss as well as mechanical properties. For the antenna performance, microstrip antenna layers inserted into structural layers were designed for satellite communication at the resonant frequency of 12.5 GHz and final demonstration article was. After making five kinds of curved CAS, which radii of curvature are flat, 200, 150, 100, 50 mm. The antenna performance changed in accordance with variation of curvature. The Reflection coefficient was independent of curvature but the gain decreased with the radius of curvature. The impact test equipment was Dyna-8250 drop weight tester. The impact characteristic in accordance with curvature is maximum absorb energy is same each other. The impact energy was 8.5 J. For various Impact energy test, five energy levels 3 J, 5 J, 7 J, 10 J, 20 J were used. The performance of impact damaged antenna was estimated by measuring the return loss and the radiation pattern. It was revealed that the performance of antenna was not related to the impact damage. Because the impactor did not damage the patch directly. CAS have good impact stability for the antenna performance.

  • PDF

Evaluation of Residual Strength in Aircraft Composite Under Impact Damage (충격손상을 받은 항공기용 복합재료의 잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-101
    • /
    • 2010
  • Composite materials have a higher specific strength and modulus than traditional metallic materials. Additionally, these materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. These, however, are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. Impact test was performed using drop weight impact tester. And residual strength behavior by impact was evaluated using the caprino model. Also we evaluated behavior of residual strength by change of mass and size of impactor. Examined change of residual strength by impact energy change through this research and consider impactor diameter in caprino model.

A study on the Determination of Fractuye Parameters for Rubber Toughened Polymeric Materials Using Instrumented Charpy Impact Test (샤피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Choi, Young-Sic;Park, Myung-Kyun;Bahk, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.389-394
    • /
    • 2001
  • The notched Charpy and Izod impact tests arc the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF