• Title/Summary/Keyword: Impact Technique

Search Result 1,465, Processing Time 0.033 seconds

The Evaluation of Strength and Damage Characteristics by AE in Impact Test of CFRP (탄소섬유 복합재료의 AE에 충격손상재강도와 손상특성 평가)

  • 이상국;오세규;남기우;김옥균
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1995
  • This study is aimed to have a database of system development for the prediction, monitoring, analyzing, and evaluation of tensile strength and damage characteristics through AE technique for CFRP. Therefore the correlations between impact characteristics (such as impact velocity, impact energy, delamination area etc) and AE signals for CFRP laminates were investigated. And also it were accomplished the evaluation of tensile strength and the investigation on correlation with AE signals for impact damaged specimen of CFRP laminates.

  • PDF

Model-based localization and mass-estimation methodology of metallic loose parts

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Munsung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.846-855
    • /
    • 2020
  • A loose part monitoring system is used to detect unexpected loose parts in a reactor coolant system in a nuclear power plant. It is still necessary to develop a new methodology for the localization and mass estimation of loose parts owing to the high estimation error of conventional methods. In addition, model-based diagnostics recently emphasized the importance of a model describing the behavior of a mechanical system or component. The purpose of this study is to propose a new localization and mass-estimation method based on finite element analysis (FEA) and optimization technique. First, an FEA model to simulate the propagation behavior of the bending wave generated by a metal sphere impact is validated by performing an impact test and a corresponding FEA and optimization for a downsized steam-generator structure. Second, a novel methodology based on FEA and optimization technique was proposed to estimate the impact location and mass of a loose part at the same time. The usefulness of the methodology was then validated through a series of FEAs and some blind tests. A new feature vector, the cross-correlation function, was also proposed to predict the impact location and mass of a loose part, and its usefulness was then validated. It is expected that the proposed methodology can be utilized in model-based diagnostics for the estimation of impact parameters such as the mass, velocity, and impact location of a loose part. In addition, the FEA-based model can be used to optimize the sensor position to improve the collected data quality in the site of nuclear power plants.

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

A Study on Assessment Standard for Environmental Impact Assessment (한국에서의 환경영향평가 평가기준에 대한 연구)

  • Lee, Mu-Choon
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.2
    • /
    • pp.111-116
    • /
    • 1993
  • The EIA system was developed during ten odd years of introduction. On the other hand, the contentional development representing systematical fidelity does not match to it. I surveyed the problems of EIA on the point of environmental items with no legal standards. EIA is being executed only once on the planning stage. If the present EIA system has two times of execution, the quality of EIA will be much better. First, on the stage of deciding location of the project, EIA should be done. And next, detailed EIA should be done on the stage of executing the project. To describe the problems of EIA, I surveyed the legislations on the point of the former stages, investigation of present status and anticipation. And I tried a theoretical approach to EIA. The knowledge of things, the subject's standpoint and his valuation are all put together in the EIA. The knowledge of relationship between air and water pollutants and their impact on human is accumulated much. On the other hand, the knowledge of the compounded item, fauna-flora(natural ecology) is partial and causes many difficulties. I pointed out the absurdities of assessment technique dealing the standards and introduced assessment technique being applied to items with no physico-chemical standards such as wild lives.

  • PDF

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests (현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가)

  • Jung, Gyung-Ja;Cho, Sung-Min;Kim, Hong-Jong;Jung, Jong-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF

Quantitative Evaluation of Delamination Inside of Composite Materials by ESPI (ESPI를 이용한 복합재료 박리결함의 정량평가)

  • Kim, Koung-Suk;Yang, Kwang-Young;Kang, Ki-Soo;Ji, Chang-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • Electronic speckle pattern interferometry (ESPI) for quantitative evaluation of delaminations inside of a composite material plate is described. Delaminations caused by the impact on composite materials are difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of the defects made in the composite plates by impact load. Artificial defects are introduced inside of the composite plate for the development of a reliable ESPI inspection technique. Real defects produced by impact tester are inspected and compared with the results of visual inspection which shows a good agreement within 5% error.

An Exploratory Research on Country-of-Origin and Its Impact on the UAE Consumers Buying Decisions

  • POTLURI, Rajasekhara Mouly;JOHNSON, Sophia
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.455-466
    • /
    • 2020
  • The purpose of the paper is to explore the country-of-origin (COO) influence on the buying decisions of the United Arab Emirates (UAE) consumers. The collected data from 370 consumers were summarized and coded by using Software R Studio and Microsoft Excel. The independent variables were analyzed and tested for their significant impact on the dependent variable, final buying decision of the product/service based on its country of origin. The selected hypotheses tested by administering the Kruskal-Wallis (K-W) hypothesis testing technique. The researchers identified that UAE consumers buying decisions influenced mainly by the country of origin of the products and services. The demographic variables like age, education, country of origin influential factors, country of choice was not displaying any significant impact on the buying decisions of consumers. The survey is limited to cover the general consumers of the country who are randomly selected from Dubai and Sharjah emirates. The study is beneficial to all the types of marketers, including domestic and international companies, who have plans to know the exact influence on consumers' buying decisions. The present research paper is original and provides empirical evidence on the country of origin's impact on the buying decisions of different products/services in the UAE.

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Optimal contact force control for a linear magnetostatic actuator (선형 Magnetostatic 작동기의 정밀 접촉력제어를 위한 최적제어기 설계)

  • ;Masada, G.;Busch-Vishniac, I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.272-275
    • /
    • 1997
  • When a manipulator makes contact with an object having position uncertainty, performance measures vary considerably with the control law. To achieve the optimal solution for this problem, an unique objective function that weights time and impact force is suggested and is solved with the help of variational calculus. The resulting optimal velocity profile is then modified to define a sliding mode for the impact and force control. The sliding mode control technique is used to achieve the desired performance. Sets of experiments are performed, which show superior performance compared to any existing controller.

  • PDF