• 제목/요약/키워드: Impact Strength

검색결과 2,105건 처리시간 0.028초

복합재 구조물의 저속 충격 손상 및 충격 후 압축 강도 해석 (Analysis of Low Velocity Impact Damage and Compressive Strength After Impact for Laminated Composites)

  • 서영욱;우경식;최익현;김근택;안석민
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.183-192
    • /
    • 2011
  • 최근 항공기의 성능향상 및 경량화 등의 필요에 의해 많은 항공기 특히 소형항공기 구조물에 있어 복합재료의 사용이 증가되고 있다. 그러나 복합재료의 복잡한 기계적 거동 특성 및 파손양상 등으로 인하여 그 사용에는 많은 제한이 따르고 있는 실정이다. 복합재에 발생하는 저속충격은 외관상 드러나지는 않기 때문에 복합재 구조물을 설계하는 데 있어 매우 중요하며, 특히 충격 후 충격손상으로 야기되는 층간 분리등은 구조물의 압축강도를 현저하게 저하시킬 수 있다. 본 연구에서는 적층복합재 구조물의 저속충격에 의한 손상거동 및 충격 후 잔류압축강도를 수치적으로 예측하였다. 예측 된 충격하중 이력곡선과 충격후의 압축 강도를 시험결과와 비교하였고 잘 일치함을 확인 할 수 있었다.

충격손상 복합재료의 피로수명에 대한 통계적 해석 연구 (Probabilistic Approach for Fatigue Life of Composite Materials with Impact-Induced Damage)

  • 강기원
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3148-3154
    • /
    • 2010
  • 본 논문에서는 충격손상 복합재료의 피로수명 저하 특성과 이의 변동성을 통계적으로 분석하였다. 충격손상 복합재료의 잔류강도는 2모수 Weibull 분포에 잘 적합되었으며 충격에너지의 증가에 따라 잔류강도의 변동성은 감소 하였다. 복합재료의 피로수명은 충격손상에 의하여 크게 저하되었으며 또한 이의 피로수명에 대한 충격손상의 영향은 작용 응력진폭에 따라 변화함을 알 수 있었다. 또한 2모수 Weibull 분포를 이용하여 충격손상 복합재료의 피로수명의 변동성을 추정하였으며 충격에너지의 증강 및 응력진폭의 감소에 따라 피로수명의 변동성은 점차 감소하였다.

온도변화가 CFRP 적층재의 충격후 잔류굽힘강도에 미치는 영향 (The Effects of Temperature Change on the Residual Bending Strength of CFRP Laminates after Impact)

  • 나승우;정종안;양인영
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, when CF/EPOXY laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(inter laminar separation and transverse crack) of CF/EPOXY laminates and the relationship between residual life and impact damages ale experimentally investigated. Composite laminates used in this experiment are CF/EPOXY orthotropic laminated plates, which have two-interfaces $[0^{\circ}_6/90^{\circ}_6]S$ and four-interfaces $[0^{\circ}_3/90^{\circ}_6/0^{\circ}_3]S$. CF/EPOXY specimens with impact damages caused by a steel ball launched from the air gun were observed by the scanning acoustic microscope under room and high temperatures. In this experimental results, various relations were experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/EPOXY laminates. And as the temperature of CF/PEEK laminates increases, the delaminaion areas of impact-induced damages decrease linearly. A linear relationship between the impact energy and the delamination areas were observed. As the temperature of CF/PEEK laminates increases, the delamination areas decrease because of higher initial delaminatin damage energy.

임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정 (Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal)

  • 손무락;김무준
    • 한국지반환경공학회 논문집
    • /
    • 제18권8호
    • /
    • pp.17-21
    • /
    • 2017
  • 본 논문은 암석 및 콘크리트 등의 건설재료의 비파괴 압축강도를 산정하기 위하여 재료타격 시 발생하는 임팩에코 응답신호를 모두 측정하고 이를 누적한 전체 사운드 신호에너지의 이용성에 관해 파악하고 그 결과를 제시하는 것이다. 본 연구에서는 이를 위해서 타격장치를 고안하였고 이를 이용하여 재료를 회전 자유낙하에 의해 초기 타격토록 하고 이후 반발작용에 의한 반복타격이 소멸될 때까지 발생할 수 있도록 하였다. 본 연구에서는 서로 다른 강도를 가지도록 배합된 콘크리트 시편에 대하여 실험을 실시하고 임팩에코 응답신호를 측정하였다. 시편별 산정된 전체 사운드 신호에너지는 직접압축강도시험을 통한 시편별 압축강도와 상호 비교하였다. 비교결과, 임팩에코 응답신호를 통해 산정된 전체 사운드 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석 및 콘크리트 등의 건설재료의 압축강도는 재료타격 시 발생하는 임팩에코 응답신호로부터 산정된 전체 사운드 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

선용접방법으로 제작된 $16{\times}16$ 최적화 H형 스프링 지지격자에 대한 진자식충격시험 (Pendulum Impact Tests for 16by16 Through Welded Spacer Grids with Optimized H type Springs)

  • 김재용;윤경호;송기남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1803-1806
    • /
    • 2007
  • The General roles of a spacer grid(SG) are providing a lateral and vertical support for fuel rods, promoting a mixing of coolant and keeping guide tubes straight so as not to impede a control rod insertion under any normal or accidental conditions. To evaluate the impact characteristics of a SG such as impact velocity, critical buckling strength and duration time, a few types of impact tests for SGs have been conducted. In a previous study, a new welding method, a through-welding method, was proposed to increase critical buckling strength of a SG without any design change or material change and was verified by impact tests with $7{\times}7$ partial SG specimens.In this paper, the effect of through-welding method in case of a $16{\times}16$ full-size SG is investigated by pendulum impact tests with $16{\times}16$ SG specimens. And the increase of critical buckling strength for full-size SGs is measured by comparison with impact results of spot-welded and through-welded SGs.

  • PDF

Carbon/Epoxy 적층판의 저속충격손상에 따른 잔류강도 평가 (Evaluation of Residual Strength of Carbon/Epoxy Laminates Due to Low Velocity Impact Damage)

  • 강민성;최정훈;김상영;구재민;석창성
    • 한국정밀공학회지
    • /
    • 제27권2호
    • /
    • pp.102-108
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic(CFRP) composite materials have been widely used in various fields of engineering because of its advanced properties. Also, CFRP composite materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. However CFRP composite materials are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. By using obtained residual strength and Tan-Cheng failure criterion, residual strength of CFRP laminate with arbitrary fiber angle were evaluated.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향 (Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal)

  • 방국수;정호신;박찬
    • 한국해양공학회지
    • /
    • 제29권6호
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

고속 변형률 속도에서의 무연 솔더 볼 연결부의 강도 평가 (Evaluation of the Joint Strength of Lead-free Solder Ball Joints at High Strain Rates)

  • 주세민;김택영;임웅;김호경
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.7-13
    • /
    • 2012
  • A lack of study on the dynamic tensile strengths of Sn-based solder joints at high strain rates was the motivation for the present study. A modified miniature Charpy impact testing machine instrumented with an impact sensor was built to quantitatively evaluate the dynamic impact strength of a solder joint under tensile impact loading. This study evaluated the tensile strength of lead-free solder ball joints at strain rates from $1.8{\times}10^3s^{-1}$ and $8.5{\times}10^3s^{-1}$. The maximum tensile strength of the solder ball joint decreases as the load speed increases in the testing range. This tensile strength represented that of the interface because of the interfacial fracture site. The tensile strengths of solder joints between Sn-3.0Ag-0.5Cu and copper substrate were between 21.7 MPa and 8.6 MPa in the high strain range.