• Title/Summary/Keyword: Impact Safety

Search Result 2,652, Processing Time 0.028 seconds

Contamination Rates in Duodenoscopes Reprocessed Using Enhanced Surveillance and Reprocessing Techniques: A Systematic Review and Meta-Analysis

  • Shivanand Bomman;Munish Ashat;Navroop Nagra;Mahendran Jayaraj;Shruti Chandra;Richard A Kozarek;Andrew Ross;Rajesh Krishnamoorthi
    • Clinical Endoscopy
    • /
    • v.55 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • Background/Aims: Multiple outbreaks of multidrug-resistant organisms have been reported worldwide due to contaminated duodenoscopes. In 2015, the United States Food and Drug Administration recommended the following supplemental enhanced surveillance and reprocessing techniques (ESRT) to improve duodenoscope disinfection: (1) microbiological culture, (2) ethylene oxide sterilization, (3) liquid chemical sterilant processing system, and (4) double high-level disinfection. A systematic review and meta-analysis was performed to assess the impact of ESRT on the contamination rates. Methods: A thorough and systematic search was performed across several databases and conference proceedings from inception until January 2021, and all studies reporting the effectiveness of various ESRTs were identified. The pooled contamination rates of post-ESRT duodenoscopes were estimated using the random effects model. Results: A total of seven studies using various ESRTs were incorporated in the analysis, which included a total of 9,084 post-ESRT duodenoscope cultures. The pooled contamination rate of the post-ESRT duodenoscope was 5% (95% confidence interval [CI]: 2.3%-10.8%, inconsistency index [I2]=97.97%). Pooled contamination rates for high-risk organisms were 0.8% (95% CI: 0.2%-2.7%, I2=94.96). Conclusions: While ESRT may improve the disinfection process, a post-ESRT contamination rate of 5% is not negligible. Ongoing efforts to mitigate the rate of contamination by improving disinfection techniques and innovations in duodenoscope design to improve safety are warranted.

Safety and efficacy comparison of embolic agents for middle meningeal artery embolization for chronic subdural hematoma

  • Nathaniel R. Ellens;Derrek Schartz;Gurkirat Kohli;Redi Rahmani;Sajal Medha K. Akkipeddi;Thomas K. Mattingly;Tarun Bhalla;Matthew T. Bender
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.1
    • /
    • pp.11-22
    • /
    • 2024
  • Objective: To perform a systematic review and meta-analysis evaluating the efficacy of middle meningeal artery embolization in terms of both clinical and radiographic outcomes, when performed with different embolic agents. Methods: A systematic literature review and meta-analysis was performed to evaluate the impact of embolic agents on outcomes for middle meningeal artery (MMA) embolization. The use of polyvinyl alcohol (PVA) with or without (±) coils, N-butyl cyanoacrylate (n-BCA) ± coils, and Onyx alone were separately evaluated. Primary outcome measures were recurrence, the need for surgical rescue and in-hospital periprocedural complications. Results: Thirty-one studies were identified with a total of 1,134 patients, with 786 receiving PVA, 167 receiving n-BCA, and 181 patients receiving Onyx. There was no difference in the recurrence rate (5.5% for PVA, 4.5% for n-BCA, and 6.5% for Onyx, with P=0.71) or need for surgical rescue (5.0% for PVA, 4.0% for n-BCA, and 6.9% for Onyx, with P=0.89) based on the embolic agent. Procedural complications also did not differ between embolic agents (1.8% for PVA, 3.6% for n-BCA, and 1.6% for Onyx, with P=0.48). Conclusions: Rates of recurrence, need for surgical rescue, and periprocedural complication following MMA embolization are not impacted by the type of embolic agent utilized. Ongoing clinical trials may be used to further investigate these findings.

Improvement Plan of Post Construction Evaluation: Focus on Construction Performance (건설공사 사후평가 개선방안: 사업수행성과 중심으로)

  • Park, Heesung;Kim, Tae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.375-383
    • /
    • 2024
  • The size of the construction industry is increasing, and its impact on the entire national industry is also significant. However, construction cost increases, construction period delays, safety accidents, and quality problems occur during the construction process. This paper analyzed the construction cost, construction period, and change order performance for civil infrastructures for which post evaluation was performed. The analysis was conducted by dividing civil engineering facilities by type, construction nature, construction cost, contract nature, and delivery method. Planned and actual construction cost and period were compared during the planning, design, and construction process of civil engineering facilities. There is a possibility of input errors in project performance data, this paper proposes to the post-evaluation center should perform post-evaluation. Also, post-evaluation implementation guidelines for change orders should be revised. Additionally, further analysis of each facility was proposed through continuous data collection.

Study for Relationship between Compressional Wave Velocity and Porosity based on Error Norm Method (중요도 분석 기법을 활용한 압축파 속도와 간극률 관계 연구)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.127-135
    • /
    • 2024
  • The purpose of this paper is to establish the relationship between compression wave velocity and porosity in unsaturated soil using a deep neural network (DNN) algorithm. Input parameters were examined using the error norm method to assess their impact on porosity. Compression wave velocity was conclusively found to have the most significant influence on porosity estimation. These parameters were derived through both field and laboratory experiments using a total of 266 numerical data points. The application of the DNN was evaluated by calculating the mean squared error loss for each iteration, which converged to nearly zero in the initial stages. The predicted porosity was analyzed by splitting the data into training and validation sets. Compared with actual data, the coefficients of determination were exceptionally high at 0.97 and 0.98, respectively. This study introduces a methodology for predicting dependent variables through error norm analysis by disregarding fewer sensitive factors and focusing on those with greater influence.

Consideration of the Relationship between Independent Variables for the Estimation of Crack Density (균열밀도 산정을 위한 독립 변수 간의 관계 고찰)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.137-144
    • /
    • 2024
  • The purpose of this paper is to analyze the significance of independent variables in estimating crack density using machine learning algorithms. The algorithms used were random forest and SHAP, with the independent variables being compressional wave velocity, shear wave velocity, porosity, and Poisson's ratio. Rock samples were collected from construction sites and processed into cylindrical forms to facilitate the acquisition of each input property. Artificial weathering was conducted twelve times to obtain values for both independent and dependent variables with multiple features. The application of the two algorithms revealed that porosity is a crucial independent variable in estimating crack density, whereas shear wave velocity has a relatively low impact. These results suggested that the four physical properties set as independent variables were sufficient for estimating crack density. Additionally, they presented a methodology for verifying the appropriateness of the independent variables using algorithms such as random forest and SHAP.

Photoactivated Metal Oxide-based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination

  • Sunwoo Lee;Gye Hyeon Lee;Myungwoo Choi;Gana Park;Dakyung Kim;Sangbin Lee;Jeong-O Lee;Donghwi Cho
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.274-287
    • /
    • 2024
  • Chemiresistors play a crucial role in numerous research fields, including environmental monitoring, healthcare, and industrial safety, owing to their ability to detect and quantify gases with high sensitivity and specificity. This review provides a comprehensive overview of the recent advancements in photoactivated chemiresistors and emphasizes their potential for the development of highly sensitive, selective, and low-power gas sensors. This study explores a range of structural configurations of sensing materials, from zero-dimensional quantum dots to three-dimensional, porous nanostructures and examines the impact of these designs on the photoactivity, gas interactions, and overall sensor performance-including gas responses and recovery rates. Particular focus is placed on metal-oxide semiconductors and the integration of ultraviolet micro-light emitting diodes, which have gained attention as key components for next-generation sensing technologies owing to their superior photoactivity and energy efficiency. By addressing existing technical challenges, such as limited sensitivity, particularly at room temperature (~22℃), this paper outlines future research directions, highlighting the potential of photoactivated chemiresistors in developing high-performance, ultralow-power gas sensors for the Internet of Things and other advanced applications.

A Bibliometric Analysis of Global Research Trends in Digital Therapeutics (디지털 치료기기의 글로벌 연구 동향에 대한 계량서지학적 분석)

  • Dae Jin Kim;Hyeon Su Kim;Byung Gwan Kim;Ki Chang Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.162-172
    • /
    • 2024
  • To analyse the overall research trends in digital therapeutics, this study conducted a quantitative bibliometric analysis of articles published in the last 10 years from 2014 to 2023. We extracted bibliographic information of studies related to digital therapeutics from the Web of Science (WOS) database and performed publication status, citation analysis and keyword analysis using R (version 4.3.1) and VOSviewer (version 1.6.18) software. A total of 1,114 articles were included in the study, and the annual publication growth rate for digital therapeutics was 66.1%, a very rapid increase. "health" is the most used keyword based on Keyword Plus, and "cognitive-behavioral therapy", "depression", "healthcare", "mental-health", "meta-analysis" and "randomized controlled-trial" are the research keywords that have driven the development and impact of digital therapeutic devices over the long term. A total of five clusters were observed in the co-occurrence network analysis, with new research keywords such as "artificial intelligence", "machine learning" and "regulation" being observed in recent years. In our analysis of research trends in digital therapeutics, keywords related to mental health, such as depression, anxiety, and disorder, were the top keywords by occurrences and total link strength. While many studies have shown the positive effects of digital therapeutics, low engagement and high dropout rates remain a concern, and much research is being done to evaluate and improve them. Future studies should expand the search terms to ensure the representativeness of the results.

Soil-to-Plant Transfer of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ Deposited during the Growing Season of Potato (감자의 재배기간 중 토양에 침적한 $^{54}Mn,\;^{60}Co,\;^{85}Sr,\;^{137}Cs$의 작물체로의 전이)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Jun, In;Keum, Dong-Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.105-112
    • /
    • 2008
  • To measure the soil-to-plant transfer factors ($TF_a,\;m^2\;kg^{-1}$-fresh) of radionuclides deposited during the growing season of potato, a radioactive solution containing $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ was applied to the soil surfaces in soil boxes 2 d before seeding and three different times during the plant growth. For the pre-seeding application (PSA), radionuclides were mixed with the topsoil (loamy sand and 5.2 in pH). The plant parts investigated were leaves, stems, tuber skin and tuber flesh. The $TF_a$ values of $^{54}Mn,\;^{60}Co,\;^{85}Sr$ and $^{137}Cs$ from the PSA were in the ranges of $1.9{\times}10^{-4}{\sim}1.5{\times}10^{-2}$, $1.8{\times}10^{-4}{\sim}7.5{\times}10^{-4}$, $4.0{\times}10^{-4}{\sim}1.6{\times}10^{-2}$, $1.5{\times}10^{-4}{\sim}3.9{\times}10^{-4}$ respectively, for different plant parts. The TFa values from the growing-time applications were on the whole a few times lower than those from the PSA. For $^{54}Mn,\;^{85}Sr$ and $^{137}Cs$, the $TF_a$ values from the early- or middle-growth-stage application were higher than those from the late-growth-stage application, whereas the opposite was true for $^{60}Co$. Leaves and tuber flesh had the highest and lowest $TF_a$ values, respectively, in most cases. The total uptake from soil by the four plant parts was in the range of $0.05{\sim}3.16%$. In the third year following the PSA, the $TF_a$ values of $^{54}Mn,\;^{60}Co$ and $^{137}Cs$ were $11{\sim}25%$, $21{\sim}25%$ and $38{\sim}67%$ of those in the first year, respectively, depending on the plant parts. The present results can be used for estimating the radiological impact of an acute radioactive deposition during the growing season of potato and for testing the validity of relevant food-chain models.

Occurrence Characteristics of Uranium and Radon-222 in Groundwater at ○○ Village, Yongin Area (용인 ○○마을 지하수내 우라늄 및 라돈-222의 산출특성)

  • Jeong, Chan Ho;Yang, Jae Ha;Lee, Yong Cheon;Lee, Yu Jin;Cho, Hyeon Young;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.261-276
    • /
    • 2016
  • The occurrence of natural radioactive materials such as uranium and radon-222 in groundwater was examined with hydrogeochemistry and geology at ○○ village in the Yongin area. Two rounds of 19 groundwater and 5 surface water sampling were collected for analysis. The range of pH value in groundwaters was 5.81 to 7.79 and the geochemical types of the groundwater were mostly Ca(Na)-HCO3 and Ca(Na)-NO3(Cl)-HCO3. Uranium and radon-222 concentrations in the groundwater ranged from 0.06 to 411 μg/L and from 5.56 to 903 Bq/L, respectively. Two deep groundwaters used as common potable well-water sources exceeded the maximum contaminant levels of the uranium and radon-222 proposed by the United States Environmental Protection Agency (US EPA). Three groundwater samples from residential areas contained unsuitable levels of uranium, and 12 groundwater samples were unsuitable due to radon-222 concentrations. Radioactive materials in the unsuitable groundwater are naturally occurring in a Jurassic amphibole- and biotite-bearing granitic gneiss. High uranium and radon-222 groundwater concentrations were only observed in two common wells; the others showed no relationship between bedrock geology and groundwater geochemical constituents. With such high concentrations of naturally occurring radioactive materials in groundwater, the affected areas may extend tens of meters for uranium and even farther for radon-222. Therefore, we suggest the radon-222 and the uranium did not originate from the same source. Based on the distribution of radon-222 in the study area, zones of higher radon-222 concentrations may be the result of diffusion through cracks, joint, or faults. Surface radioactivity and uranium concentrations in the groundwater show a positive relationship, and the impact areas may extend for ~200m beyond the well in the case of wells containing high concentrations of uranium. The highest uranium and thorium concentrations in rock samples were detected in thorite and monazite.

A Study on the Impact of Human Factors for the Students Pilot's in ATO -With Respect to Korea Aviation Act and ICAO Human Factors Training Manual- (항공법규에 의거 지정된 조종사 양성 전문교육기관의 학생조종사에 대한 휴먼팩터 영향 연구)

  • Lee, Kang-Seok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.26 no.2
    • /
    • pp.149-179
    • /
    • 2011
  • Statistics of aviation accident in Korea show that safety level of training flights is high. However, more than 80% of aviation accidents happen owing to human factors. And because most reasons of them are concerned with pilot error, it is very important for student pilots who will transport a lot of passengers to develop the knowledge of safety and abilities of risk management for preventing accidents. In this study, in order to investigate the Human Factors which affect safety in training student pilots for flight, verified the correlationbetween experiences of accident, the differences according to the experience level of training flight and the differences between college student pilots and ordinary student pilots on the basis of human factors that composes the SHELL models. For the study, Using SPSS 17.0, conducted Correlation Analysis, Analysis of Variance(ANOVA) and t-test. To sum up the result of this study, student pilot's ability and equipment in the cockpit are the important factors for safety when pilots are training flight. Also the analysis of the differences between human factors according to the characters of student pilots' groups shows that college student pilots are affected by immanent factors and organizational cultures. So far, there haven't been any accidents which is related with human casualties when training at the ATO(Approved Training Organization). But accidents can occur at any time and anywhere. Especially the human factors which comprises most of aviation accident have a wide reach and are impossible to be eliminated, therefore, it is best to minimize them. Because ATO is the starting point to lead the aviation industry of Korea, we will have to be aware of problems and improve education/training of human factors.

  • PDF