• Title/Summary/Keyword: Impact Reaction Force

Search Result 108, Processing Time 0.027 seconds

Analysis of Biomechanical Differences based on Distance Changes in Connection with Approach Swings of Tour-professional Golfers

  • You, Moon-Seok;Lee, Kyung-Ill
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.83-92
    • /
    • 2016
  • Objective: This study aimed to compare differences in biomechanical factors according to distance changes in relation to approaches during a round of golf to obtain basic data on golf swings. Methods: The research subjects were 8 KPGA-affiliated professional golfers who performed approach shots that put a ball into a circle of 8 feet in diameter from distances of 30, 50, and 70 m. Data were collected by using six infrared cameras and a ground reaction force device, which were applied to calculate biomechanical factors by using Kwon3D XP. The calculated data were subjected to one-way ANOVA by using SPSS 20.0, with the significance level set at p value of 0.05. Results: Elapsed time, stance width, clubhead position variation, clubhead synthesis speed, and cocking angle significantly differed according to distance change during the approach swing. Clubhead speed was positively related with stance width and clubhead displacement. Ground reaction force significantly differed according to distance change during the approach swing. Factors before and after showed differences in other states, except in the impact state. Conclusion: In the present study, we drew several conclusions regarding biomechanical factors and ground reaction forces according to distance change in the approach swing of professional golfers. According to these conclusions, we suggest that distance control with swing range is more important than power control in maintaining the accuracy and consistency of golf swing and is the most important mechanism of golf swing.

The Biomechanical Analysis of a One-Legged Jump in Traditional Korean Dance According to Breathing Method (호흡 방법에 따른 한국무용 외발뛰기 동작의 운동역학적 분석)

  • An, Ju-Yeun;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Objective : The purpose of this study was to conduct a biomechanical analysis of a one-legged jump in a traditional Korean dance (Wae Bal Ddwigi) according to breathing method. Method : Participants for this study were 10 dancers with experience for at least 10 years in traditional Korean dance. Independent variables for this test were two different types of breathing methods. Dependent variables were ground reaction force and lower extremity kinematic variables. The jumping movement was divided into three separate stages, take off, flight, and landing. The subjects were asked a questionnaire regarding the degree of impact force and stability of landing posture after the experiment. The Kistler Force Plate (9281B, Switzerland) was used to measure ground reaction force. A digital camera was used to look into angles of each joint of the lower part of body. SPSS was used for statistical analysis via the dependent t-test(p<.05). Results : There were significant differences in jumping according to breathing method. The inhalation & exhalation method yielded significantly longer flight times combined with greater ground reaction force. The breath-holding method required more core flexion during landing, increasing movement at the hips and shoulders. Conclusion : Consequently, there was more flexion at the knee to compensate for this movement. As a result, landing time was significantly higher for breath-holding.

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

The Biomechanical Comparison of Running Shoes According to the Difference of Insole (인솔 차이에 따른 런닝화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Sung-Hwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

The Biomecanical Analysis of Taekwondo Footwear (태권도화의 운동역학적 분석)

  • Jin, Young-Wan;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $2.56{\pm}0.21\;m$/sec by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). showed that averagely was distinguished from other factors, and did not show about that.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.

Optimum Design of Impact Absorbing System for Spreader by Vibration Analysis (진동해석에 의해 스프레더용 충격흡수기의 최적설계)

  • 홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.689-693
    • /
    • 1997
  • This paper deals wth the impact and the transient analysis of the impact absorbing system consist of double damping. piston and sprlng system in spreader to increaas efficlcncy of it. It shows the optimum damping coefficient and spring constant under the limited stroku of Impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain reaction force as time. which is characteristic of dashpot and rubber. This system absorbed 11.5 and 88.5 % impact energq at the spring and the damper respectively.

  • PDF

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

An Investigation about Dynamic Behavior of Three Point Bending Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.149-157
    • /
    • 2000
  • Computer simulations of the mechanical behavior of a three point bend specimen with a quarter notch under impact load are performed. The case with a load application point at the side is considered. An elastic-plastic von Mises material model is chosen. Three phases such as impact bouncing and bending phases are found to be identified during the period from the moment of impact to the estimated time for crack initiation. It is clearly shown that no plastic deformation near the crack tip is appeared at the impact phase. However it is confirmed that the plastic zone near the crack tip emerges in the second phase and the plastic hinge has been formed in the third phase. Gap opening displacement crack tip opening displacement and strain rate are compared with rate dependent material(visco-plastic material). The stability during various dynamic load can be seen by using the simulation of this study.

  • PDF

Case Study for High Ozone Episode day during Summertime in Busan (부산지역 여름철 고농도 오존 발생의 사례 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.303-313
    • /
    • 2003
  • This study was carried out to survey the high ozone episode of summertime in Busan. The selected day was July 18, 1999 and August 24, 2001 which recorded exceed to 12ppb/hr at 3 station in Busan simultaneously. In case July 18, 1999, thick cloud and variable wind made weak ozone concentration during morning hour. And increase of ozone concentration by revolution of mixed layer for morning hour did not occur in this case study day. Photochemical reaction by strong radiation after 1100LST made sharp increase rate of ozone concentration(50ppb/hr). In case August 24, 2001, the meteorological condition of this day was not general wind with gradient force, very clear day with less cloud amount, high insolation and sunshine. Dongsamdong, Beomcheondong, Daeyeondong, and Sinpyeongdong had double peak which twice maximum concentration in the early afternoon and late afternoon. Ozone concentration of this day was in inverse proportion to Nitrogen oxide strongly. Ozone concentration exceed to 60ppb/hr occurred at 1400LST, continued to 2300LST.