• Title/Summary/Keyword: Impact Properties

Search Result 2,560, Processing Time 0.033 seconds

Mechanical Behavior of Potato and Sweet Potato under Impact and Compression Loading (감자와 고구마의 충격 및 압축 특성에 관한 연구)

  • Hong J.H.;Kim C.S.;Kim J.Y.;Kim J.H.;Choe J.S.;Chung J.H.;Park J.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.369-375
    • /
    • 2006
  • Mechanical properties of potato and sweet potato were measured under impact and compression loading. The test apparatus consisted of disgital storage oscilloscope and simple mechanisms which can apply compression and impact forces to potatoes and sweet potatoes. The mechanical properties could be measured while the tissues were ruptured in a very short period time less than 10 ms by impact loading. Rupture force, energy, and deformation were measured as mechanical properties of potatoes and sweet potatoes under impact and compression loading. Rupture forces under impact and compression loading were in the range of 84.1 to 93.7N and 128.9 to 132.2N for external tissues and 60.1 to 64.8N and 158.9 to 171.1N for internal tissues of potato and sweet potato, respectively. Compression speeds and drop heights for each test were in the range of 1.25 to 62.5mm/min and 8 to 24cm.

Influence of laminated orientation on the mechanical and thermal characteristics of carbon-fiber reinforced plastics

  • Shin, Hee-Jae;Kwac, Lee-Ku;Lee, Min-Sang;Kim, Hong-Gun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • Rapid industrial development in recent times has increased the demand for light-weight materials with high strength and structural integrity. In this context, carbon fiber-reinforced plastic (CFRP) composite materials are being extensively used. However, laminated CFRPs develop faults during impact because CFRPs are composed of mixed carbon fiber and epoxy. Moreover, their fracturing behavior is very complicated and difficult to interpret. In this paper, the effect of the direction of lamination in CFRP on the absorbed impact energy and impact strength were evaluated, including symmetric ply (0°/0°, −15°/+15°, −30°/+30°, −45°/+45°, and −90°/+90°) and asymmetric ply (0°/15°, 0°/30°, 0°/45°, and 0°/90°), through drop-weight impact tests. Further, the thermal properties of the specimens were measured using an infrared camera. Correlations between the absorbed impact energy, impact strength, and thermal properties as determined by the drop-weight impact tests were analyzed. These analyses revealed that the absorbed impact energy of the specimens with asymmetric laminated angles was greater than that of the specimens with symmetric laminated angles. In addition, the asymmetry ply absorbed more impact energy than the symmetric ply. Finally, the absorbed impact energy was inversely proportional to the thermal characteristics of the specimens.

Influence of Oxygen Plasma Treatment on Impact Behaviors of Carbon Fibers-reinforced Composites (산소 플라즈마 처리가 탄소섬유강화 복합재료의 충격특성에 미치는 영향)

  • Oh, Jin-Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.23-26
    • /
    • 2005
  • In this work, effects of oxygen plasma on surfc1ce characteristics of carbon fibers were investigated in impact strength of carbon fibers-reinforced composites. The surface properties of the carbon fibers were determined by acid/base values, FT-IR, and X-ray photoelectron spectroscopy (XPS). Also, the mechanical properties of the composites were studied by impact strength measurements. As experimental results, the $O_{IS}/C_{IS}$ ratio of the carbon fiber surfaces treated by oxygen plasma was increased compared to that of untreated ones, possibly due to development of oxygen-containing functional groups. The mechanical properties of the composites, including impact strength had been improved by the oxygen plasma on fibers. These results could be explained that the oxygen plasma resulted in the increase of the adhesion of between fibers and matrix in a composite system.

  • PDF

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

The Effect of Harder Second Phase on Mechanical Properties of Compacted/Vermicular Graphite Cast Iron (CV 흑연주철의 기계적 성질에 미치는 경질의 제2상의 영향)

  • Park, Yoon-Woo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.84-90
    • /
    • 1999
  • In this study, CV cast iron was reverse transformed to produce harder second phase surrounding graphite nodules, and then the microstructure and related mechanical properties of the reverse transformed CV cast iron were investigated by using optical microscopy and by carrying out hardness, tension and impact test. The formation of hard second phase surrounding graphite nodules increased the hardness in CV cast iron. The marked increase in hardness was resulted from the formation of martensite surrounding graphite nodule. It is expected from these results that the formation of martensite surrounding graphite nodule would improve the wear resistance of CV cast iron. The formation of both martensite and pearlite surrounding graphite nodule improved the tensile properties. Impact properties were decreased with increasing the volume fraction of hard second phase. However, the reduced impact properties could be recovered through phase transformation of martensite into pearlite and sorbite by tempering.

  • PDF

Analysis of Failure Reduction Properties Cementitious Composites with Reinforced Fiber by Impact of High Velocity Projectile (비상체의 고속 충격을 받는 시멘트복합체의 혼입 단섬유에 따른 파괴저감특성 분석)

  • Jeon, In-Woo;Kim, Gyu-Yong;Cheo, Gyeong-Cheol;Kim, Hong-Seop;Kim, Jung-Hyun;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.186-187
    • /
    • 2014
  • Flexural stress and fracture energy of fiber reinforced cementitious composites is increased by bridge effect of reinforced fiber, scabbing failure is restrained. Shape, properties of fiber were SF(steel fiber), PA(polyamide), NY(nylon) have effects on flexural stress and fracture energy, impact resistance improve of fiber reinforced cementitious composites. In this study, local failure properties by impact of high velocity projectile was analyzed by mixing 3 types of fiber which have different shape and properties respectively.

  • PDF

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF

Mechanical Properties of Paper Sludge-Polypropylene Composites (제지 슬러지-폴리프로필렌수지 복합재의 기계적 성질)

  • Lee, Phil-Woo;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.51-62
    • /
    • 1999
  • The objective of this research is to develop paper sludge reinforced thermoplastic composites which incorporate the advantages of each component materials. The effects of paper sludge content(0, 10, 20, 30, 40----), mesh size(20~40, 60~80, less than 100mesh), and coupling agent(Epolene E-43 and Epolene G-3003) on the mechanical properties of paper sludge-polypropylene composites were investigated. Composite density increased with an increase in the paper sludge content. When paper sludge is incorporated into a polypropylene matrix, the flexural properties of the composite increase significantly with an increase in the paper sludge mixing ratio. Especially, flexural modulus was improved with increasing paper sludge content. The flexural strength of composites was improved, but flexural modulus reduced somewhat with decreasing paper sludge particle size. The flexural properties of paper sludge-polypropylene composites were improved by using coupling agents to enhance the bonding between reinforcing filler and matrix. Use of the epolene E-43 and G-3003 resulted in considerable improvement in the flexural strength over control specimens. The flexural strength of the G-3003 composite system is higher than that of the E-43 system. Generally, izod notched impact strength of paper sludge-polypropylene composite decreased slightly, whereas izod unnotched impact strength decreased significantly with increasing paper sludge contents. There was no effects of paper sludge particle size on impact strength of paper sludge-polypropylene composites. And izod unnotched impact strength of epolene E-43 composite system sharply decreased but that of G-3003 composite system was no tendency with increasing additive content.

  • PDF

Effect of Austenitizing and Quenching·Tempering Temperatures on Tensile and Impact Properties of AISI 51B20 (AISI 51B20강의 인장 및 충격특성에 미치는 오스테나이트화 온도와 퀜칭·템퍼링 온도의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.327-337
    • /
    • 2011
  • Effects of microstructural change, tensile properties and impact property according to the change of austenitizing temperature and tempering temperature of AISI 51B20 steel were examined. Regardless of austenite grain size, lath martensite with needle and packet shapes was found at tempering temperature of $300^{\circ}C{\sim}400^{\circ}C$. The needles of lath martensite changed to parallel packet at tempering temperature of $450^{\circ}C{\sim}600^{\circ}C$. As tempering temperature increased, tensile strength, yield strength and hardness decreased, while elongation, ratio of reduction area and Charpy impact energy increased. Grain size increased when quenching temperature was $930^{\circ}C$. Grain size had prominent effect on the mechanical properties of AISI 51B20 steel. Ratio of tensile strength/yield strength and yield strength autenitized at $880^{\circ}C$ followed by tempering at $350^{\circ}C{\sim}450^{\circ}C$ showed higher values than that of autenization at $930^{\circ}C$ due to fine grain size.

Comparison Between the Dynamic Properties and Noise Isolation Performances for a Floor Impact Isolation Pad (바닥충격음 완충재의 동적특성과 소음저감 성능 비교)

  • Yang, Soo-Young;Lee, Dong-Hoon;Hong, Boung-Kuk;Song, Hwa-Young;Lee, Joo-Wone
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • In this study, the dynamic properties of a floor impact sound isolation pad expressed in terms of the natural frequency, the dynamic stiffness per unit area and the loss factor are measured by the resonant method. By using the measured dynamic properties, the vibration transmissibility diagram is obtained for each isolation pad, which is compared with the values tested by the impact sound sources at the room in an apartment. From the comparative results, it is found that the noise reduction Performances. of isolation pads are closely connected with the natural frequency and the dynamic stiffness per unit area.

  • PDF