• Title/Summary/Keyword: Impact Point of Arrow

Search Result 6, Processing Time 0.021 seconds

Measuring System for Impact Point of Arrow using Mamdani Fuzzy Inference System (Mamdani 퍼지추론을 이용한 화살의 탄착점 측정 시스템)

  • Yu, Jung-Won;Lee, Han-Soo;Jeong, Yeong-Sang;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.521-526
    • /
    • 2012
  • The performance of arrow from a manufacturing process depends on arrow's trajectory(archer's paradox) and intensity of an impact points. Especially, when conducting a shooting experiment over and over in the same experiment condition, the intensity of impact point is an objective standard to judge the performance of the arrow. However, the analysis method for the impact point is not enough, a previous research of the arrow's performance has been focused on a skill to optimize a manufacturing variables(feathers of an arrow, barb of an arrow, arrow's shaft, weight, external diameter, spine). In this paper, We propose measurement system of arrow's impact point with Mamdani fuzzy inference system and similarity of polygon for automation of impact point's measurement. Measuring the impact point data of the arrow moving with a high speed(approximately 275km/h) by using line laser and photo diode array, then the measured data are mapped to arrow's impact point with fuzzy inference and similarity of polygon.

A Study of Arrow Performance using Artificial Neural Network (Artificial Neural Network를 이용한 화살 성능에 대한 연구)

  • Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.548-553
    • /
    • 2014
  • In order to evaluate the performance of arrow that manufactures through production process, it is used that personal experiences such as hunters who have been using bow and arrow for a long time, technicians who produces leisure and sports equipment, and experts related with this industries. Also, the intensity of arrow's impact point which obtains from repeated shooting experiments is an important indicator for evaluating the performance of arrow. There are some ongoing researches for evaluating performance of arrow using intensity of the arrow's impact point and the arrow's flying image that obtained from high-speed camera. However, the research that deals with mutual relation between distribution of the arrow's impact point and characteristics of the arrow (length, weight, spine, overlap, straightness) is not enough. Therefore, this paper suggests both the system that could describes the distribution of the arrow's impact point into numerical representation and the correlation model between characteristics of arrow and impact points. The inputs of the model are characteristics of arrow (spine, straightness). And the output is MAD (mean absolute distance) of triangular shaped coordinates that could be obtained from 3 times repeated shooting by changing knock degree 120. The input-output data is collected for learning the correlation model, and ANN (artificial neural network) is used for implementing the model.

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

Relationship of Follow-through Movements to Target Accuracy in Compound Archers (컴파운드 양궁의 팔로우 스루 동작과 사격 정확도의 상관관계)

  • Junkyung Song;Kitae Kim
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.34-44
    • /
    • 2024
  • Objective: This study aimed to investigate how the movements occurring during the follow-through phase after releasing an arrow among elite compound archers, are associated with the arrow impact points on the target. Method: Nine elite archers performed consecutive compound archery shooting under conditions identical to actual competitions using their own bows and equipment. Motion capture system and force platform were utilized to record the changes in joint positions and center of pressure, respectively. Principal component analysis was employed to identify the patterns in which multidimensional joint positions and COP changes were organized with horizontal and vertical coordinates of arrow impact points. Subsequently, correlation analysis quantified the relationship between individual variables and the coordinates of arrow impacts on the target. Results: We found a common organizational pattern in which the two axes of the impact point coordinates were grouped into the first two principal components. The movements of the upper and lower limbs following release exhibited opposite patterns in the anterior-posterior axis, with significant correlations observed between the arrow impact points of the horizontal axis and the left shoulder, right elbow, left hip, and both knees. Additionally, the lateral movements induced by the reaction force upon arrow release showed significant associations with the vertical coordinates of the impact points. Particularly, the correlations between the movements of the left shoulder and elbow, as well as the bilateral hip and right knee, were consistently observed among all participants. Conclusion: These findings implied that the post-release movements could significantly influence the trajectory and impact points of the arrows in compound archery. We suggest that a consistent and controlled movement during the follow-through phase may be more beneficial for optimizing shooting accuracy and precision rather than minimizing movements.

Hardware Configuration and Paradox Measurement for the Determination of Arrow Trajectory (화살의 이동궤적을 위한 하드웨어 구성 및 패러독스 측정)

  • Jeong, Yeong-Sang;Yu, Jung-Won;Lee, Han-Soo;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.459-464
    • /
    • 2012
  • The point of impact, the shot group, and the flight traces depend on the combination of unique features which decide moving traces of the arrow (paradox of the archer, length of the arrow shaft, weight, angle of the feather, and spline of the arrow shaft). The more dense the impact points in the shot group and the earlier elimination of paradox of the archer, the higher assessment is given for the product. However, there is no way to objectively assess the efficiency and quality of the arrow, and there is no numeric data to be used as the basis for comparison with other products. Although capturing the images of flying arrow using a high-speed motion picture camera is possible, we are limited to observation from specific view angle only. Hence, the criteria for efficiency and quality assessment are mostly based on subjective opinions of experts or hunters, or review on consumers' remarks. In this paper, we propose a hardware composition that are based on three detection frames consisting of line lasers and photo diode arrays without the high-speed motion picture camera. Predicated on measured coordinates data, a nobel method for the archer's paradox measurement, a key parameter that determine the arrow's trajectory, and corresponding numerical analysis model is proposed.

Measurement of Archer's Paradox Size using Multiple Frames (다중프레임을 이용한 궁사의 패러독스 크기 측정)

  • Kim, Jonggeun;Jeong, Yeongsang;Song, Moonjae;Kim, Sungshin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • An arrow produced by a manufacturing process is evaluated using the archer's paradox and the intensity of the impact point. The accuracy rate in particular is changed by the arrow's vibrational movement, which is called the archer's paradox. The archer's paradox occurs not only in the right, left, upward, and downward directions, but in all directions. The optimized value of the archer's paradox has not been studied yet. This paper proposes to measure the archer's paradox to determine its optimized value. Measuring the archer's paradox using a high-speed camera is expensive, and it is difficult to translate the result to a numerical value. However, the device for measuring the archer's paradox proposed in this paper is inexpensive, and the results are easy to convert to a numerical value. Therefore, this device is more suitable for optimization of the archer's paradox than a high-speed camera. In this paper, we propose to measure the size of the paradox using multiple frames, which can measure the position of an arrow moving at a speed of 300km/h to within millimeters. We calculate the size of the paradox experimentally using the measured location in each frame. This value is not an approximate value, but an accurate numerical value.