• Title/Summary/Keyword: Impact Monitoring

Search Result 1,093, Processing Time 0.024 seconds

An Automatic Diagnosis Methods for Impact Location Estimation

  • Kim, Jung-Soo;Lyu, Joon
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.101-108
    • /
    • 1999
  • In this paper, a real time diagnostic algorithm for estimating the impact location by loose parts is proposed. It is composed of two modules such as the alarm discrimination module (ADM) and the impact-location estimation module(IEM). First, ADM decides whether the detected signal that triggers the alarm is the impact signal by loose parts or the noise signal. Second, IEM by use of the arrival time method estimates the impact location of loose parts. In order to validate the application of this method, the test experiment with a mock-up (flat board and reactor) system is performed. The experimental results show the efficiency of this algorithm even under high level noise and potential application to Loose Part Monitoring System (LPMS) for improving diagnosis capability in nuclear power plants.

  • PDF

Impact Damage Detection of Smart Composite Laminates Using Wavelet Transform (웨이블릿 변환을 이용한 스마트 복합적층판의 충격 손상 검출 연구)

  • 성대운;오정훈;김천곤;홍창선
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The objective of this research is to develop the impact monitoring techniques providing impact identification and damage diagnostics of smart composite laminates susceptible to impacts. This can be implemented simultaneously by using the acoustic waves by the impact loads and the acoustic emission waves from damage. In the previous research, we have discussed the impact location detection process in which impact generated acoustic waves are detected by PZT using the improved neural network paradigm. This paper describes the implementation of time-frequency analysis such as the Short-Time Fourier Transform (STFT) and the Wavelet Transform (WT) on the determination of the occurrence and the estimation of damage.

  • PDF

Identification of impact forces on composite structures using an inverse approach

  • Hu, Ning;Matsumoto, Satoshi;Nishi, Ryu;Fukunaga, Hisao
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.409-424
    • /
    • 2007
  • In this paper, an identification method of impact force is proposed for composite structures. In this method, the relation between force histories and strain responses is first formulated. The transfer matrix, which relates the strain responses of sensors and impact force information, is constructed from the finite element method (FEM). Based on this relation, an optimization model to minimize the difference between the measured strain responses and numerically evaluated strain responses is built up to obtain the impact force history. The identification of force history is performed by a modified least-squares method that imposes the penalty on the first-order derivative of the force history. Moreover, from the relation of strain responses and force history, an error vector indicating the force location is defined and used for the force location identification. The above theory has also been extended into the cases when using acceleration information instead of strain information. The validity of the present method has been verified through two experimental examples. The obtained results demonstrate that the present approach works very well, even when the internal damages in composites happen due to impact events. Moreover, this method can be used for the real-time health monitoring of composite structures.

Evaluation of the Possession of Measurement and Analytical Instruments in Domestic Work Environment Monitoring Service Providers (II) (국내 작업환경측정기관의 측정 및 분석장비 보유실태에 대한 고찰 (II))

  • Jang, Jae-Kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.182-192
    • /
    • 2014
  • Objectives: The aim of this study is to analyze the current status of possession of measurement and analytical instruments at work environment monitoring organizations and their relationships with human resources, including the number of professional engineers and evaluation scores resulting from evaluation programs in 2012. Materials: Data for measurement and analytical instruments were gathered by inspectors who had been assigned by the Korea Occupational Safety and Health Agency(KOSHA) and the Ministry of Employment and Labor(MoEL) during the evaluation program for 2012. Data for 11 monitoring instruments and nice pieces of analytical equipment were collected from 103 organizations. Additional data such as the type of service provides and the number of professional engineers employed were also recorded by the inspectors. Evaluation scores could be acquired from KOSHA. Results: Comprehensive Occupational Health Service Providers showed good operation quality, while University or Hospital Subsidiary and Work Environment Monitoring Organizations recorded relatively poor results. Evaluation scores correlated well with the possession of measurement instruments and human resources for each organization. High yields provided by professional engineers also showed statistically-associated contributions to evaluation scores and monitoring instrument possession. Compared with monitoring instruments, the amount of analytical equipment had little positive impact on organizations' competence. Conclusions: The evaluation results for domestic monitoring organizations revealed that human resources, possession of instruments, and the quality of employees were critical factors for operating the corporations. Each organization should give considerable effort to improving their ability to strengtheninternal quality, resulting in high-yield production for workers and employers by providing improved workplace monitoring services.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Comparison of properties at Fossil Power Plant by On-Line Real Time Performance Monitoring System (On-Line 실시간 성능감시 시스템을 이용한 화력발전소 운전 Parameter 값 비교분석)

  • Jung, Hoon;Park, Doo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3501-3505
    • /
    • 2007
  • As the power plant industry has been changed into competition structure, power generation companies do more with less by increasing capacity and lowering operation costs. In order to achieve this goals, an on-line real-time performance monitoring system has been needed to introduced to fossil power plant. The system represents a suite of related software modules which consist of on-line data, and on-line performance modules. This system can help the plant staff get the most out of their facilities by continuously monitoring deviations in equipment performance and the impact on those deviations on plant power, heat rate and operating cost. This paper shows the comparison of design value with acceptance test and current(measured) value.

  • PDF

Monitoring Method for Pipe Thinning using Accelerometers (가속도계를 이용한 배관 감육 감시 방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.156-162
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time-frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

  • PDF

Monitoring Pipe Thinning Using Time-frequency Analysis (시간-주파수 기법을 이용한 배관 감육 감시 방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

A monitoring system for wind turbines subjected to combined seismic and turbulent aerodynamic loads

  • Fitzgerald, Breiffni;Basu, Biswajit
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.2
    • /
    • pp.175-194
    • /
    • 2017
  • Research to date has mainly focused on structural analysis and design of wind turbines considering turbulent aerodynamic loading. The combined effects of wind and seismic loading have not been studied by many researchers. With the recent expansion of wind turbines into seismically active regions research is now needed into the implications of seismic loading coupled with turbulent aerodynamic loading. This paper proposes a monitoring procedure for onshore horizontal axis wind turbines (HAWTs) subjected to this combined loading regime. The paper examines the impact of seismic loading on the 5-MW baseline HAWT developed by the National Renewable Energy Laboratory (NREL). A modified version of FAST, an open-source program developed by NREL, is used to perform the dynamic analysis.

Application of FBG Sensors to the Monitoring of Railway Bridges (철도교량 모니터링을 위한 FBG 센서의 응용)

  • Chung Won-Seok;Kang Dong-Hoon;Choi Eun-Soo;Lee Jun-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.10-14
    • /
    • 2006
  • FBG sensors are able to measure the strain of structures more easily and durable than electronic resistance gages and thus many researches are on the way to apply the FBG sensor for response monitering of infrastructures. This study investigates the deflection estimation technique using FBG sensors. Several FBG sensors are multiplexed in single optical fiber and installed. in parallel pairs along the length of the structure. The measured strains at the top and bottom of a cross section can be transferred to the curvature of the section which can be used to calculate its displacement. It has been demonstrated that the estimated deflections using the FBG sensor are compared well with the readings from displacement transducers. The results show that the proposed instrumentation technique is capable of estimating the vertical deflection of the structures for various loading conditions including impact and dynamic loads, which is crucial in the structural health monitoring.

  • PDF