• Title/Summary/Keyword: Impact Model

Search Result 8,109, Processing Time 0.04 seconds

Impact Responses of Two Colliding Bodies Considering Sensor Dynamics (센서 동역학을 고려한 충돌체간의 충격응답)

  • 류봉조;안길영;권병희;송오섭;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.394-401
    • /
    • 2004
  • This paper presents a study on the analysis of impact responses taking into account sensor dynamics. The contact force between impacting bodies is modelled by using Hertz force-displacement law and linear damping function. Since the real impact force and acceleration at the contact surface of two colliding bodies are measured indirectly by the sensors, the measured outputs can be a little different from the real impact responses. Therefore, in this study, the importance of consideration of sensor dynamics in the impact problems of two colliding bodies is emphasized. In order to verify the appropriateness of the proposed contact force model, the drop type impact test using two kinds of sensors is carried out. Through the numerical analysis and experiment, the effect of sensor dynamics and characteristics on the contact force model is investigated.

Acquisition of Parameters for Impact Damage Analysis of Sheet Molding Compound Based on Artificial Neural Network (인공신경망 기반 SMC 복합재료의 충돌 손상 해석을 위한 파라메터 획득)

  • Lee, Sang-Cheol;Kim, Jeong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.115-122
    • /
    • 2021
  • SMC(Sheet molding compound) composite is mainly used for forming of vehicle's body. Considering the car accident, it is essential to research the impact behavior and characteristics of materials. It is difficult to identify them because the impact process is completed in a short time. Therefore, the impact damage analysis using FE(finite element) model is required for the impact behavior. The impact damage analysis requires the parameters for the damage model of SMC composite. In this paper, ANN(artificial neural network) technique is applied to obtain the parameters for the damage model of SMC composite. The surrogate model by ANN was constructed with the result in LS-DYNA. By comparing the absorption energy in drop weight test with the result of ANN model, the optimized parameters were obtained. The acquired parameters were validated by comparing the results of the experiment, the FE model and the ANN model.

Developing the LMS Model for Frontal Offset Impact Analysis (정면 옵? 충돌해석을 위한 LMS 모델 개발)

  • Han, Byoung-Kee;Jung, Hoon;Kim, Ji-Hong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.211-216
    • /
    • 2003
  • A frontal offset impact model Oat can simulate the 40% offset frontal impact into deformable barrier regulated in EU Directive 96/79 EC has been developed. Engine rotation effects are also considered in the model. Distributed 11 masses and characteristics of 23 nonlinear springs comprising the model are determined based on both the stick-model analysis under the general specification of car and the dynamic characteristics of car structure. It is demonstrated that simulated acceleration-time curve for passenger part is in good agreement with test data obtained by NHTSA.

The Effect of the Second Impact for Abrasive Jet Micromachining (미세입자 분사 가공에서 2차 충돌의 영향)

  • Park Y.W.;Lee J.M.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.488-491
    • /
    • 2005
  • Abrasive Jet Micromachining (AJM) is a process that uses high pressure air with micron-sized particles to erode a substrate. It has been considered as the most economic and appropriate technique to pattern glass surfaces for the flat panel applications. To accelerate the industrialization of AJM, it is necessary to understand the erosion mechanisms thoroughly. Thus, this paper introduces a new method to model the erosion mechanism in AJM. The model is developed by using the concept of the accumulation of the microdeformation caused by each particle. And this paper proposes the model added the effects of second impact. The developed model is used to simulate the erosion profile, and is compared with the model considered only first impact. It can be concluded that the proposed model predicts the erosion profile more accurately.

  • PDF

Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure (벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용)

  • Yoo, Seung-Yup;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

Compaction process in concrete during missile impact: a DEM analysis

  • Shiu, Wenjie;Donze, Frederic-Victor;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.329-342
    • /
    • 2008
  • A local behavior law, which includes elasticity, plasticity and damage, is developed in a three dimensional numerical model for concrete. The model is based on the Discrete Element Method (DEM)and the computational implementation has been carried out in the numerical Code YADE. This model was used to study the response of a concrete slab impacted by a rigid missile, and focuses on the extension of the compacted zone. To do so, the model was first used to simulate compression and hydrostatic tests. Once the local constitutive law parameters of the discrete element model were calibrated, the numerical model simulated the impact of a rigid missile used as a reference case to be compared to an experimental data set. From this reference case, simulations were carried out to show the importance of compaction during an impact and how it expands depending on the different impact conditions. Moreover, the numerical results were compared to empirical predictive formulae for penetration and perforation cases, demonstrating the importance of taking into account the local compaction process in the local interaction law between discrete elements.

Numerical modeling of rapid impact compaction in loose sands

  • Ghanbari, Elham;Hamidi, Amir
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.487-502
    • /
    • 2014
  • A three dimensional finite element model was used to simulate rapid impact compaction (RIC) in loose granular soils using ABAQUS software for one impact point. The behavior of soil under impact loading was expressed using a cap-plasticity model. Numerical modeling was done for a site in Assalouyeh petrochemical complex in southern Iran to verify the results. In-situ settlements per blow were compared to those in the numerical model. Measurements of improvement by depth were obtained from the in-situ standard penetration, plate loading, and large density tests and were compared with the numerical model results. Contours of the equal relative density clearly showed the efficiency of RIC laterally and at depth. Plastic volumetric strains below the anvil and the effect of RIC set indicated that a set of 10 mm can be considered to be a threshold value for soil improvement using this method. The results showed that RIC strongly improved the soil up to 2 m in depth and commonly influenced the soil up to depths of 4 m.

A study on the human impulse characteristics with the typical shooting posture (주요 사격자세에 따른 인체 충격량 특성 해석)

  • Choi, Young-Jin;Lee, Young-Shin;Han, Kyoo-Hyun;Chae, Je-Uk;Choi, Eui-Jung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.459-464
    • /
    • 2004
  • The rifle impact of human body affected by the posture of human for rifling. The interaction human-rifle system influence the firing accuracy. In this paper, impact analysis of human model for shooting posture is carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. As the results, the displacement of rifle and transfer path analysis of impact of human model is presented.

  • PDF

Prediction of Delamination for Composite Laminates Using Sound Radiation (음향을 이용한 복합 적층판의 층간분리 예측)

  • Kim, Sung-Joon;Chae, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.800-804
    • /
    • 2005
  • In this paper, the radiated sound pressure induced by low velocity impact is obtained by solving the Rayleigh integral equation. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. It is well known that the presence of the delamination in a composite laminate introduces a local flexibility which changes the dynamic characteristic of the structure. The 2-D simplified delamination model is used to analyze the impact response. And the 3-D non-linear finite element model is developed using gap element to avoid the overlap and penetration between the upper and lower sub-laminates at delamination region. Predicted impact response using 2-D equivalent delamination model are compared with the numerical ones from the 3-D non-linear finite element model.

  • PDF

Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF