• Title/Summary/Keyword: Impact Location

Search Result 854, Processing Time 0.039 seconds

Supporting plane for intelligent robot system (지능 로보트 시스템에 있어서 지면의 이용에 관한 연구)

  • 박경택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.990-995
    • /
    • 1991
  • The integration of intelligent robots into manufacturing systems should positively impact the product quality and productivity. A new theory of object location and recognition using the supporting plane is presented. The unknown supporting points are determined by image coordinates, known camera parameters, and joint coordinates of the robot manipulators. This is developed by using the geometrical interpretation of perspective projection and the geometrical constraints of industrial environments. This can be applied to solve typical robot vision problems such as determination of position, orientation, and recognition of objects.

  • PDF

Survey & Analysis of Park and Ridership in Seoul (도시철도 환승주차장의 이용실태 조사분석)

  • 김경철;고주연
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.33-40
    • /
    • 1999
  • Park and Ride(P&R) system has not implemented it's intended object in Seoul metropolitan area, still less it didn't impact on diminishing the ridership of urban railway. This paper is focused on analysis of Park and Rail ride user survey of travel behavior and trip chain. We propose the ideal location of P&R in Seoul and stratagies to increase the utilization of P&R.

  • PDF

The Effect of Differential Heat Treatment on the Mechanical Properties and Microstructure of the Large Back-up Roll (대형Back-Up roll에서 차등열처리가 기계적 성질 및 조직변화에 미치는 영향)

  • Kim, Gyeong-Hyeon;Gang, Seok-Bong;Jeon, Ui-Jin;Jang, Yun-Seok
    • 한국기계연구소 소보
    • /
    • s.16
    • /
    • pp.3-16
    • /
    • 1986
  • The first specimens were sampled across the depth of roll products processed by rapid heating and cooling of the roll, namely, differential heat treatment. The second samples were taken from the non-heat treated roll at different depths. The samples were heat treated following the same temperature history as that at each corresponding location in the roll where the samples were taken. Consequently, both specimens showed the similar microstructure and mechanical properties (tensile, impact and fatigue strength etc.)

  • PDF

THE IMPACT OF AIRCRAFT NOISE ON MILITARY EXERCISE AND TRAINING AREAS

  • Bugge, Jens-Jorgen;Knut Fuglum, Bjorn Tronstad
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.812-816
    • /
    • 1994
  • Gardermoen is chosen as the location for a new major airport for the Oslo area, The site is surrounded by various units and camps operated by the Norwegian national defence. A study was carried out to evaluate whether the occurrence of aircraft noise may result in the national defence having to restrict operations in established camps, and in areas where outdoor exercise, training and instruction are beeing carried out.

  • PDF

Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity (상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, WeonCheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

A Study on the Prediction of the Loaded Location of the Composite Laminated Shell by Using Neural Networks (신경회로망을 이용한 복합재료 원통쉘의 하중특성 추론에 관한 연구)

  • 명창문;이영신;류충현
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.26-37
    • /
    • 2001
  • After impact analysis of the composite cylindrical shells was performed. obtained outputs at 9 equally divided points of the shell were used as input patterns of the neural networks. Identification of impact loading characteristics was predicted simultaneously. Momentum backpropagation algorithm of neural networks which can modify the momentum coefficient and learning rate was developed and applied to identify the loading characteristics. Hidden layers of the backpropagation increased from 1 layer to 3 layers and trained the loading characteristics. Developed program with variable learning rate was converged close to real load characteristics under 1% error. Inverse engineering which identify the impact loading characteristics can be applicable to the composite laminated cylindrical shells with developed neural networks.

  • PDF

Effect of the seismic excitation angle on the dynamic response of adjacent buildings during pounding

  • Polycarpou, Panayiotis C.;Papaloizou, Loizos;Komodromos, Petros;Charmpis, Dimos C.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1127-1146
    • /
    • 2015
  • The excitation angle or angle of incidence is the angle in which the horizontal seismic components are applied with respect to the principal structural axes during a time history analysis. In this study, numerical simulations and parametric studies are performed for the investigation of the effect of the angle of seismic incidence on the response of adjacent buildings, which may experience structural pounding during strong earthquakes due to insufficient or no separation distance between them. A specially developed software application has been used that implements a simple and efficient methodology, according to which buildings are modelled in three dimensions and potential impacts are simulated using a novel impact model that takes into account the arbitrary location of impacts and the geometry at the point of impact. Two typical multi-storey buildings and a set of earthquake records have been used in the performed analyses. The results of the conducted parametric studies reveal that it is very important to consider the arbitrary direction of the ground motion with respect to the structural axes of the simulated buildings, especially during pounding, since, in many cases, the detrimental effects of pounding become more pronounced for an excitation angle different from the commonly examined 0 or 90 degrees.

Determinants of Lake Zone Forest Resources' Status: Analyzing the Impact of Implemented Policies in Tanzania

  • Mihayo, Isege Z.;Peng, Daiyan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.233-242
    • /
    • 2020
  • The Lake (Victoria) zone of Tanzania, which has the least forest resources in the country, is a potential economic growth zone in the country. Therefore, this study analyses the impact of implemented forest policies on the status of forest resources in the area, given the unique features. The study identifies the status of forested lands in the area, and then fits binary logistic regression to identify the impact of policies related elements (i.e. type of forest, type of management) on the status; forest area and location (region) are used as control variables. Results show that 63% of the forested land in the area is destructed; main activities being agriculture, residential, firewood, and charcoal burning activities. Logistic results showed natural forests, forests located in Geita region, forests managed by municipal councils are more likely to be destructed; while plantation forests, forests located in Kagera region, privately managed forests are less likely to be destructed. Thus, the study concludes that policies and measures are not enough for the preservation of forest resources in the area; some of the economic activities in the area are occurring at the expenses of the forests; hence recommend more sustainable development plans and incorporating different crossing cutting sectors in the policies.

Numerical Simulation of Slamming Phenomena for 2-D Wedges (2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석)

  • Yum, Deuk-Joon;Yoon, Bum-Sang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.

Design optimization of intelligent service robot suspension system using dynamic model (동역학 모델을 활용한 서비스용 지능형 로봇의 현가시스템 설계 최적화)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.565-570
    • /
    • 2008
  • Recently, the intelligent service robot is applied for the purpose of guiding the building or providing information to the visitors of the public institution. The intelligent robot which is on development has a sensor to recognize its location at the bottom of it. Four wheels which are arranged in the form of a lozenge support the weight of the components and structures of the robot. The operating environment of this robot is restricted at the uneven place because the driving part and internal structure is designed in one united body. The impact from the ground is transferred to the internal equipments and structures of the robot. This continuous impact can cause the unusual state of the precise components and weaken the connection between each structural part. In this paper, a suspension system which can be applied to the intelligent robot is designed. The dynamic model of the robot is created, and the driving characteristics of the actual robot and the robot with suspension are compared. The road condition which the robot can operate is expanded by the application of the suspension system. Additionally, the suspension system is optimized to reduce the impact to the robot components.

  • PDF