• Title/Summary/Keyword: Impact Loading

Search Result 839, Processing Time 0.023 seconds

Stress Analysis at an Impact Loading Point of Finite Plates according to the dimensions of Impact Loading Parameter (충격하중계수의 크기에 따른 유한평판의 충격하중 작용점에서의 응력해석)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.46-52
    • /
    • 1996
  • In this paper, an analytical method is proposed to find the dimensions of impact stresses with using the dimensions of impact loading parameter regardless of mass of impactor, velocity of impactor, and plate thickness. In analytical method of Impulsive stresses, the three-dimensional dynamic theory of elasticity using rectangular coordinates and the potential theory of displacement are utilized, and when the measurement of Impact loading is difficult especially for a steel ball colliding on an infinite plate, the impact loading can be obtained by using the classical plate theory and Hertz’s contact theory. And in the numerical analysis, the fast Fourier transform (F. F. T.) algorithm and the numerical inverse Laplace transformation are used because the analysis of impact loading Is difficult to obtain solutions by using the thress-dimensional dynamic theory of elasticity.

  • PDF

Fatigue Life Predication of Impacted Laminates Under Block Loading (블록하중을 받는 충격손상 적층복합재료의 피로수명 예측)

  • Kim, Jeong-Gyu;Gang, Gi-Won;Yu, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1089-1096
    • /
    • 2001
  • This paper presents the fatigue behavior of composite materials with impact-induced damage under 2 level block loading. For this purpose, the 2 level block loading fatigue tests were performed on the impacted composite laminate. The fatigue life of the laminate under the block loading is greatly influenced by the impact damage; the effect of impact damage can be characterized by the present impact damage parameter. Based on this parameter, the model is developed to predict the fatigue life under block loading and the results by this model agree well with experimental results regardless of applied impact energy. Also, stochastic model is established to describe the variation of cumulative damage behavior and fatigue life due to the material nonhomogeneity.

Low velocity impact behavior of concrete beam strengthened with CFRP strip

  • Kantar, Erkan;Anil, Ozgur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Nowadays CFRP (Carbon Fiber Reinforced Polymer) became widely used materials for the strengthening and retrofitting of structures. Many experimental and analytical studies are encountered at literature about strengthening beams by using this kind of materials against static loads and cyclic loads such as earthquake or wind loading for investigating their behavior. But authors did not found any study about strengthening of RC beams by using CFRP against low velocity impact and investigating their behavior. For these reasons an experimental study is conducted on totally ten strengthened RC beams. Impact loading is applied on to specimens by using an impact loading system that is designed by authors. Investigated parameters were concrete compression strength and drop height. Two different sets of specimens with different concrete compression strength tested under the impact loading that are applied by dropping constant weight hammer from five different heights. The acceleration arises from the impact loading is measured against time. The change of velocity, displacement and energy are calculated for all specimens. The failure modes of the specimens with normal and high concrete compression strength are observed under the loading of constant weight impact hammer that are dropped from different heights. Impact behaviors of beams are positively affected from the strengthening with CFRP. Measured accelerations, the number of drops up to failure and dissipated energy are increased. Finite element analysis that are made by using ABAQUS software is used for the simulation of experiments, and model gave compatible results with experiments.

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

Optimal design of a portable structure under impact loading (충격부하를 받는 휴대용 구조물의 최적설계)

  • Oh, Deog-Su;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.804-809
    • /
    • 2001
  • Optimal design of a portable structure which supports impact loading is presented. The structure requires impact loading capability, stiffness and minimum weight for portability. A collapsible tripod structure with locking mechanism is suggested. Taguchi method has been used to identify the most important design variables and the initial design. Subsequent optimization yields additional weight reduction under stress and displacement constrains.

  • PDF

Measurements of Mechanical Behavior of Rough Rice under Impact Loading (벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究))

  • Cha, J.Y.;Koh, H.K.;Noh, S.H.;Kim, M.S.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS

  • Zaid, Mohammad
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.505-518
    • /
    • 2021
  • The present paper has been carried out to understand the effects of impact loading on the rock tunnels, constructed in different region corresponding to varying unconfined compressive strength (UCS), through finite element method. The UCS of rockmass has substantial role in the stability of rock tunnels under impact loading condition due to falling rocks or other objects. In the present study, Dolomite, Shale, Sandstone, Granite, Basalt, and Quartzite rocks have been taken into consideration for understanding of the effect of UCS that vary from 2.85 MPa to 207.03 MPa. The Mohr-Coulomb constitutive model has been considered in the present study for the nonlinear elastoplastic analysis for all the rocks surrounding the tunnel opening. The geometry and boundary conditions of the model remains constant throughout the analysis and missile has 100 kg of weight. The general hard contact has been assigned to incorporate the interaction between different parts of the model. The present study focuses on studying the deformations in the rock tunnel caused by impacting load due to missile for tunnels having different concrete grade, and steel grade. The broader range of rock strength depicts the strong relationship between the UCS of rock and the extent of damage produced under different impact loading conditions. The energy released during an impact loading simulation shows the variation of safety and serviceability of the rock tunnel.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.

Low Velocity Impact Characteristics of Glass/phenol Composite Laminates (Glass/phenol 복합적층판의 저속충격 특성)

  • Kim, Jae-Hoon;Kim, Hu-Shik;Park, Byoung-Joon;An, Byoung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.228-233
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. This study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF