• 제목/요약/키워드: Impact Load

검색결과 1,588건 처리시간 0.028초

선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 - (Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis -)

  • 이상갑;박중규
    • 대한조선학회논문집
    • /
    • 제37권1호
    • /
    • pp.99-110
    • /
    • 2000
  • 파랑충격하중에 의한 선수 구조부의 손상은 주로 충격압력역적과 파랑충격하중이 가한 면적에 의하여 크게 영향을 받는다. 본 연구에서는 세 번째 단계로서 LS/DYNA3D를 이용하여 파랑충격하중에 대한 DWT 300,000급 VLCC의 선수 구조부의 동적 구조해석을 수행하여 검증을 하고자 한다. 극치 6.5MPa, 후부높이 1.0MPa, 지속시간 5.0msec인 파랑충격압력 곡선을 강성이 작은 보강재로 보강된 선수 구조부에는 면적 $1.5s{\times}1.5s$, 대체로 강성이 큰 스트링거 등의 부재로 보강된 경우는 면적 $2.5s{\times}2.5s$에 가한다. 이상의 동적 구조해석을 통하여 넓은 간격의 보강재가 부착된 선수 구조부에는 외판과 보강재에 큰 손상변형이 발생한 것 이외는 고려 중인 유조선의 선수 구조부는 본 연구의 파랑충격하중에 대하여 충분한 강도를 지닌다고 사료된다.

  • PDF

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

파랑에 의한 새만금 방조제 해측 피복석 거동특성 연구 (A Study on the Behaviour Characteristics of the Saemanguem Sea Dyke Coastal Covering Stones by Sea Waves)

  • 백승철;이소열
    • 한국지반환경공학회 논문집
    • /
    • 제12권7호
    • /
    • pp.67-76
    • /
    • 2011
  • 본 연구에서는 방조제의 피복석에 파랑이 작용하는 경우에 대한 거동특성을 평가하고자 하였다. 파랑은 방조제 또는 호안구조물에 충격하중으로 작용하게 되며, 충격하중이 작용하는 동안 호안구조물은 침식과 부분 붕괴로 인한 급경사지가 발생하게 된다. 또한, 충격하중은 피복석에 마모를 발생시킨다. 방조제는 국내에서 1970년대 이래로 해안가 산업기반시설의 보호를 위해 널리 이용되고 있다. 방조제는 주로 준설모래와 사석 그리고 피복석으로 구성되며, 피해 유형은 1970년대부터 보고되었으나 파랑작용과 피복석의 상호작용에 대한 연구는 아직까지도 충분하지 않은 실정이다. 방조제 피복석의 가장 큰 피해유형은 마모이지만, 이에 대한 연구 역시 충분하지 못한 실정이다. 따라서 본 연구에서는 호안구조물에 파랑이 작용하는 경우 발생하는 충격하중과 피복석의 상호관계를 분석하였다. 방조제에 작용하는 파랑하중을 고려하여 수치해석을 수행하였으며, 파랑하중의 규모와 주기에 따른 피복석의 거동특성을 분석하였다. 또한, 파랑하중으로 인해 발생하는 방조제의 변위증가를 평가하였다.

안전벨트 충돌하중특성 최적화 (Optimization of Seat belt Load Limiter for Crashworthiness)

  • 서보필;최성철;김범중;한성준
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

RCAR 전방 저속 충돌시험 대응 범퍼 스테이 설계 (Bumper Stay Design for RCAR Front Low Speed Impact Test)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.191-197
    • /
    • 2016
  • RCAR low speed impact test estimates repair cost of the impacted vehicle. In this study, for a mid-size vehicle front body model, structural performance for RCAR low speed impact were analyzed with changing the bumper stay shape and size. First, for improving the impact load transfer mechanism to side member the stay rear section shape at connecting area with side member was modified and the stay outer was redesigned to be normal to the barrier. Next, the investigation on stay thickness effect was carried out and the performances of several models with different forming shape were compared. The final design showed 13mm decrease in the maximum barrier intrusion distance and greatly reduced side member deformation. Additional analyses explained the validity of the final design.

평판 부착형 제진시스템을 이용한 구조기인 소음 저감에 관한 연구 (Noise control of a slab using the laminated composite damping system)

  • 황재승;김광용;홍건호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.403-407
    • /
    • 2009
  • It is reported that the heavy weight floor impact noise of a slab system is very sensitive to the location of microphone and impact load. In addition, it is known that the aspect raio, thickness and boundary condition of a slab also have great effect on the noise induced by impact load. However, the effect has been mainly evaluated by experimental test and numerical analysis is nearly performed to verify the effect quantitatively. In this study, the effect of the aspect ratio, thickness and boundary condition on the heavy weight floor impact noise is examined through numerical analysis for simple rectangular slab system. The results show that the thickness and boundary condition have a strong correlation with the noise of the slab, on the contrary, the aspect ratio has little relation with the noise.

  • PDF

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II) (A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II))

  • 차천석;양인영
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

고온초전도 벌크 베어링을 사용한 유도 전동기의 특성 시험 (Performance Tests of an Induction Motor with Hexahedron HTS Bulk Bearing)

  • 임형우;이광윤;박명진;차귀수;이지광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권6호
    • /
    • pp.286-290
    • /
    • 2003
  • The high temperature superconducting bulk can be used as the bearing of induction motors. This paper presents the fabrication and test results of an induction motor with superconducting bearings using HTS bulks. The bearing had eight hexahedron type YBCO bulks. Height, width and thickness of the HTS bulk were 30mm, 30mm and 10mm, respectively. Single phase induction motor was used to drive the shaft made of aluminum and the rotor of a conventional induction motor. To estimate the performance of the HTS bulk magnetic bearing, no load test, load test and Impact test were carried out. Load tests were performed by using air resistance caused by the shaft-mounted thin cylinder with buckets. Impact tests by axial direction and vertical direction impact showed that the vibration of the shaft gradually decayed. The induction motor with HTS bulk magnetic bearing rotated silently and smoothly throughout the tests. According to the test results, conventional bearings can be replaced with superconducting magnetic bearings made of HTS bulks.

단순 보모델을 이용한 측면충돌 해석기술 연구 (A Study on Side Impact Simulation Technique using Simple Beam Model)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.170-177
    • /
    • 1997
  • In this study, an analysis technique using simple beam model for predicting structure crashworthiness of the passenger car side impacted with an angle by another passenger car was investigated. The simple model was composed of major beam-like side structure which carry almost all side impact load. A procedure of component collapse test, calculation of load carrying capability and dynamic simulation was carryed out sequentially. Transient dynamic algorithms and a computer program to simulate deformations and motions of the impacted car was developed. The developed procedure was applied to a 3 door passenger car side impacted with an angle of 75 degree and the analysis results show good agreements with the actual test results.

  • PDF

서비스 로봇용 가변강성 형 안전관절의 설계 (Design of a Variable-Stiffness Type Safety Joint for Service Robots)

  • 정재진;장승환
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.