• 제목/요약/키워드: Impact Fuze

검색결과 5건 처리시간 0.018초

수중폭발을 이용한 충격신관 작동 계측 (Measurement of the Impact Fuze Phenomena using the Underwater Explosion)

  • 최시홍
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.479-484
    • /
    • 2014
  • In this paper, This study shows the content on the impact fuze test and the measurement using underwater explosion phenomena. The impact fuze has both a delay function and a super quick. Up to now, nothing but the naked eye of the observer has been used to verify performance of the impact fuze. The observer has determined the performance by the shape of the plume created from the explosion phenomenon. However, it is extremely difficult to use that method at a long range. In order to solve the problem, the measurement using the underwater explosion phenomena was tried.

크러시스위치 조립체의 작동신뢰성 확인을 위한 M&S와 시험 결과 비교 (M&S and Experimental Comparison of Crush Switch Assembly for Operation Validation)

  • 김민겸;정명숙;엄원영;장준용
    • 한국군사과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.229-236
    • /
    • 2020
  • A crush switch assembly(CSA) connected to an impact fuze provides electrical signal for detonation of the loaded main charge when an impact with the target is detected. Because the CSA experiences continuous changes in flight environment such as changes in velocity, vibration, and stresses, it is necessary to accurately predict the behavior of the fuze to maintain functionality during flight and to detonate when necessary. In this paper, random vibration analysis for flight environment and impact analysis on target hit are performed using FEA. Then, high speed impact tests are performed with the original and scaled down models to ensure operation validation of the manufactured products. The test results are then compared with M&S results to verify the capability of currently modeled CSA.

ESAF의 기폭 신뢰성 향상을 위한 충격감지장치 연구 (A Study on the Impact Sensing Device for Improving the Firing Function Reliability of ESAF)

  • 조세영
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.525-531
    • /
    • 2015
  • In this paper, a novel impact sensing device for an ESAF(Electronic Safe and Arming Fuze) is presented. An impact sensing device is mounted in front of a weapon, and it detects an impact when it crashes against a target. There are two main design requirements to enhance the firing functional reliability of the ESAF; an operational reliability and a reduced latency, which is a delay time needed for sensing the impact. The design method of the contact-type impact sensing device, which employs an FPCB(Flexible Printed Circuit Board) so it can be used other weapons, is proposed. The tests demonstrated that the design described in this work show a reduced delay time with ensuring the operational reliability.

PELE의 경사진 충격에 따른 파괴 메커니즘에 대한 연구 (A Study of Failure Mechanism for Inclined Impact of PELE)

  • 조종현;이영신
    • 한국군사과학기술학회지
    • /
    • 제15권5호
    • /
    • pp.712-719
    • /
    • 2012
  • Penetrator with enhanced lateral effect(PELE) is a newconcept projectile, without dynamite and fuze. It consists of high-density jacket, closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE, by AUTODYN-3D code, the calculation models of projectile body and bullet target are established and the process of penetrating aluminum-2024 alloy target of PELE is simulated, and the scattering characteristics after penetrating aluminum-2024 alloy target of PELE are studied by different initial velocity. The explicit finite element analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. As expansion of filling, the fragments were obtained velocities and dispersed laterally and further more enhancing the damage area largely. The number and shape of the PELE fragments were different depend on impact velocity and incidence angle of filling which fragment generated during penetration and lateral dispersion process.

고충격에 신관의 생존성을 향상시키기 위한 다층 충격완충장치 전산해석 연구 (Numerical Investigation for Multi-layer Shock Absorber to Improve Survivability of Fuze at High Impact)

  • 소경재;김민겸;이대희
    • 한국전산구조공학회논문집
    • /
    • 제33권4호
    • /
    • pp.255-261
    • /
    • 2020
  • 본 논문은 충격을 줄이기 위해 효과적인 충격완충장치를 구성하는 방법을 제안했다. 기존의 충격완충장치는 폴리에틸렌으로만 만들어졌지만, 새로운 충격완충장치는 외측에는 폴리에틸렌, 내측에는 고밀도 재료로 구성하였다. 충격은 내측과 외측 물질 사이의 밀도 차이가 더 클 때 줄어들었다. 2층 구조의 외측으로 설계하기 위해 알루미늄, 티타늄, 구리를 선택하였다. 가장 밀도가 높은 구리에서는 충격 감소가 가장 좋았으며, 기존 충격완충장치보다 최대 감가속도는 43%, 충격량은 51% 감소하였다. 4층, 6층 충격완충장치의 경우, 충격량은 줄였지만, 최대 감가속도는 증가하였다. 신관은 가장 큰 충격으로부터 살아남아야 하며 나머지 충격파는 임계값을 초과하지 않으므로, 본 논문은 폴리에틸렌-구리를 사용한 2층 구조용 충격완충장치를 제안하였다.