• Title/Summary/Keyword: Impact Fracture Toughness

Search Result 185, Processing Time 0.023 seconds

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

Analysis of Dynamic Fracture Behavior by Using Instrumented Charpy Impact Test (계장화 샬피 충격시험에 의한 동적 파괴거동 해석)

  • Lee, O.S.;Kim, S.Y.;Hong, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.64-71
    • /
    • 1995
  • This investigation evaluates dynamic fracture characteristics of two alloy steels (STD-11 and STS-3) and a gray cast iron (GC-30). The dynamic fracture toughness of crack initiation and some of the dynamic fracturing characteristics were evaluated by using the instrumented Charpy impact testing procedures. It was found from experimental results for three kinds of materials that inertia force is directly proportional to impact velocity. The duration time of inertia force was found to be constant regardless of impact velocities in steel specimens.

  • PDF

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 7. Studies on Work of Adhesion and Fracture Toughness of Carbon-Carbon Composites (산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 7. 탄소/탄소 복합재료외 부착력과 파괴인성)

  • 박수진;서민강;이재락
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.435-440
    • /
    • 2001
  • The objective of this study was to examine the effect of oxidation inhibitor contents on the work of adhesion, fracture toughness, and impact strength of the unidirectional carbon-carbon composites (C/C composites). The molybdenum disilicide ($MoSi_2$) used as an oxidation inhibitor was impregnated with phenolic resins to improve the anti-oxidation properties of the composites in different concentrations of 4, 12 and 20 wt%. Based on Wilhelmy equation, the work of adhesion of C/C composites was calculated by contact angle methods. Fracture toughness and impact strength were pressured by three-point bending test for the critical intensity factor ($K_IC$) and Izod test method, respectively. As a result, the composites made with $MoSi_2$ resulted in an increasing of both fracture toughness and impact strength. Especially, the composites made with 12 wt% $MoSi_2$ content showed the highest value of London dispersive component, $W_A\;^L$, in work of adhesion, resulting from improving the interfacial adhesion force among fibers, filler, and matrix in this system.

  • PDF

Effect of Temperature on the Charpy Impact and CTOD Values of Type 304 Stainless Steel Pipeline for LNG Transmission

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kho, Young-Tai
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1064-1071
    • /
    • 2002
  • Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to -162$^{\circ}C$ The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to -162$^{\circ}C$ .

An Experimental Study on Toughening of Unsaturated Polyester Mortar (불포화 폴리에스테르 모르터의 인성강화에 관한 실험 연구)

  • 김화중;박준철;윤명덕;윤요현;최영준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1115-1120
    • /
    • 2000
  • The purpose of this study is to investigate toughening of unsaturated polyester resin by addition of liquid rubber. In general, unsaturated polyester liquid has strong brittleness in spite of if high strength Therefore; it is difficult use polyurethane liquid rubber for the place where impact resistance is demanded. In this study, it was evaluated strength, impact resistance and fracture toughness by adding to polyurethane liquid rubber(0~25%). As a result, it was found that a tendency to be increase bearing impact and fracture toughness as polyurethane liquid rubber increased but strength was decreased.

An Analysis for Delaminations Using Energy Release Rate in CFRP Laminates (에너지 해방률을 이용한 CFRP 적층복합재료의 층간분리 평가)

  • Gang, Gi-Won;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2115-2122
    • /
    • 2000
  • The understanding of impact-induced delamination is important in safety and reliability of composite structure. In this study, a model for arrest toughness is proposed in consideration of fracture behavior of composite materials. Also, the probabilistic model is proposed to describe the variability of arrest toughness due to the nonhomogeneity of material. For these models, experiments were conducted on the Carbon/Epoxy composite plates with various thickness using the impact hammer. The elastic work factor used in J-Integral is applicable to the evaluation of energy release rate. The fracture behavior can be described by crack arrest concept and the arrest toughness is independent of the delamination size. Additionally, a probabilistic characteristics of arrest toughness is well described by the Weibull distribution function. A variation of arrest toughness increases with specimen thickness.

The Study of Dynamic Fracture Characteristics for Tempering Temperature of STD-11 (STD-11 합금공구강의 뜨임 온도에 따른 동적 파괴특성 연구)

  • 김선용
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 1996
  • This study is to evaluate dynamic fracture characteristics of alloy tool steel, STD-11, according to various tempering conditions (heat treatment). The dynamic fracture initiation toughness and some of the dynamic fracturing characteristics were evaluated by using the instrumented Charpy impact testing procedures. The distributions of Victors hardness and dynamic fracture initiation toughness with respect to varying tempering temperatures are found to be symmetric type with the help of experimental results for the STD-11. It is also found that the dynamic fracture initiation toughness is a inverse proportion to Vickers hardness. In this experimental study, it is found that the best heat treatment condition is 55$0^{\circ}C$ tempering in alloy tool steel, STD-11, because the results show high values of Vickers hardness and dynamic fracture initiation toughness.

  • PDF

Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model (접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용)

  • Hwang, B.N.;Lee, C.J.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.