• 제목/요약/키워드: Impact Fracture Toughness

검색결과 185건 처리시간 0.025초

35톤급 FRP선박 외판자재의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Side Plate for G/T 35ton Class FRP Vessel)

  • 이진정
    • 선박안전
    • /
    • 통권25호
    • /
    • pp.64-76
    • /
    • 2008
  • This paper describes the failure mechanism and Charpy impact test of Fiber glass Reinforced Plastic composites which it was actually used for side plate of vessel. There are two examinations. The examination I, the specimens which it given temperature range $-25^{\circ}C$-$50^{\circ}C$ and with different initial notch length did impact test and then it compared impact energy(Uc) and impact fracture toughness(GIC). The examination II, the specimens which it putted into fresh water and sea water for scheduled hours did impact test and it compared impact energy(Uc) and impact fracture toughness(GIC). From examination I, it showed that impact energy(Uc) and impact fracture toughness(GIC) were peak at ambient temperature and decrease as temperature reduced. Fracture toughness(GIC) showed increase as initial notch length reduced. From examination II, impact energy(Uc) and impact fracture toughness(GIC) tended to increase which specimens putted in fresh water compared with sea water and maximum tolerance rate tend to decrease as permeation hours will be long.

  • PDF

35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship)

  • 김형진;이진정;고성위;김재동
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구 (Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement)

  • 장복기;김윤주
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.690-695
    • /
    • 2004
  • 본 연구에서는 무기(강, 아스베스트와 카본) 및 유기(폴리아크릴과 폴리아마이드) 섬유가 포트랜드 시멘트의 물성 보강에 미치는 영향을 조사하였다. 각 시편의 하중-변형 관계도로부터 굽힘강도, 탄성계수, 파괴에너지 및 파괴인성 값을 구하여 서로 비교하였다. 그리고 따로 충격에너지 실험도 수행하였으며 파괴에너지와 비교하였다. 휨강도 개선에는 무기(아스베스트) 섬유보강이 가장 효과적이었으며, 충격에너지의 보강섬유로는 유기(폴리아크릴) 섬유가 가장 좋았다. 한편 강 섬유는 휨 강도와 충격에너지 양자를 동시에 보강하는 데에 가장 적합했다. 또한 강 섬유는 모든 섬유 중에서 가장 높은 파괴에너지와 파괴인성 값을 나타내었다.

베이나이트 함유 비조질강의 충격인성 및 파괴거동 (Impact Toughness and Fracture Behavior in Non-Heat Treating Steels Containing Bainite)

  • 조기섭;권훈
    • 열처리공학회지
    • /
    • 제32권4호
    • /
    • pp.161-167
    • /
    • 2019
  • Impact toughness and fracture behavior were studied in five kinds of non-heat treating steels containing bainite; standard(0.25C-1.5Mn-0.5Cr-0.2Mo-0.15V), high V(0.3V), Ni(0.5Mn-2Ni), W(0.4W instead of Mo), and high C-Ni(0.35C-0.5Mn-2Ni) steels. The good hardness and impact toughness balance was exhibited in the $1100^{\circ}C$-rolled condition, while the impact toughness was deteriorated due to coarse grained microstructure in the $1200^{\circ}C$-rolled condition. The impact toughness decreased with increasing the hardness in all steels studied. The fracture behavior was also basically identical, that is, the fracture area was divided into 3 zones; shear and fibrous zone, fracture transition zone with ductile dimples and cleavage cracks, where the cracks initiate and grow to critical size, unstable cleavage fracture propagation zone. The energy absorbed for the critical crack formation through the plastic deformation inside the plastic zone in front of the notch root contributed to a mostly significant portion of the total impact energy.

유효 $K_{1d}$ 산정을 위한 샬피 충격시험편의 노치형상에 관한 연구 (An Evaluation of Notch Shpae for Estimation of Available $K_{1d}$ by Instrumented Charpy Impact Test)

  • 우창기;강동명;이하성
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.135-143
    • /
    • 1999
  • This investigation evaluates effects of notch depth, fatigue precrack length and side groove in impact specimen for estimation of a valid K1d by instrumented Charpy impact test. Specimen material is 6005-T6. for notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm , dynamic fracture toughness [$K_{1d,(1)}$] obtained by crack initiation load($P_m$) should be used. Dynamic fracture toughness of side grooved specimens are overestimated to that of standard impact specimen about 15 %-20%. It is confirmed that the formula of dynamic fracture toughness obtained by impact absorbed energy is inappropriate for ductile materials.

  • PDF

Charpy 충격시편을 이용한 압력용기 재료의 파괴인성 측정 (Evaluation of Fracture Toughness of Pressure Vessel Steel Using Charpy Impact Test Specimens)

  • Han, Dae-June;Park, Sun-Pil
    • Nuclear Engineering and Technology
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 1987
  • 원자로 압력용기 재료인 SA 533 Grade B Class 1강의 파괴인성에 대하여 -4$0^{\circ}C$~288$^{\circ}C$의 온도 구간에서 Charpy 충격시편을 이용하여 연구하였다. 동적 파괴인성은 계장화 충격시험으로, 정적 파괴인성은 unloading compliance 방법에 따라 3-point bend test로 수행되었으며, 결과는 큰 시편에 의한 자료와 비교하였다. 온도에 대한 재료의 적절한 파괴인성치(하한값)는 천이온도 이상에서는 정직 파괴인성을, 그 이하의 온도에서는 동적 파괴인성을 택함으로써 유추할 수 있음을 알게 되었으며 side-groove가 14%이상일 때 시험은 ASTM E 813의 조건을 만족함을 보였다.

  • PDF

해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구 (A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures)

  • 강성원;김명현;김용빈;신용택;이해우
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Impact of temperature cycling on fracture resistance of asphalt concretes

  • Pirmohammad, Sadjad;Kiani, Ahad
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.541-551
    • /
    • 2016
  • Asphalt pavements are exposed to complex weather conditions and vehicle traffic loads leading to crack initiation and crack propagation in asphalt pavements. This paper presents the impact of weather conditions on fracture toughness of an asphalt concrete, prevalently employed in Ardabil road networks, under tensile (mode I) and shear (mode II) loading. An improved semi-circular bend (SCB) specimen was employed to carry out the fracture experiments. These experiments were performed in two different weather conditions namely fixed and cyclic temperatures. The results showed that consideration of the impact of temperature cycling resulted in decreasing the fracture toughness of asphalt concrete significantly. Furthermore, the fracture toughness was highly affected by loading mode for the both fixed and cyclic temperature conditions studied in this paper. In addition, it was found that the MTS criterion correctly predicts the onset of fracture initiation although this prediction was slightly conservative.

탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성 (Fracture Toughness and AE Behavior of Impact-Damaged CFRP)

  • 이상국;남기우;오세규
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 1997
  • 탄소섬유강화복합재료(CFRP) 적층판에 비교적 낮은 에너지의 충격을 주어, 충격에 의해서 손상된 적층판을 사용하여 인장강도, 파괴 인성 및 AE 신호 특성에 미치는 충격 손상의 영향에 대하여 검토하였다. 충격손상재의 인장강도, 파괴 인성 및 AE-event count는 충격 속도와 박리 면적의 증가에 따라서 감소함을 알 수 있었다. 그리고 충격시험시에 발생한 박리 면적은 충격 속도와 비례하였다. 또한 적층 방법에 따른 손상재의 강도비와 파괴 인성비가 달라짐이 확인되어 복합재료의 내충격 설계시 손상량과 손상재의 파괴 인성 및 강도에 대한 정량적 평가를 AE 신호로부터 해석할 수 있음이 확인되었다.

  • PDF

에폭시기지 복합재료의 충격파괴인성에 관한 연구 (A Study on the Impact Fracture Toughness of Epoxy Matrix Composites)

  • 김재동;전진탁;고성위
    • 수산해양교육연구
    • /
    • 제9권2호
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF