• Title/Summary/Keyword: Impact Fracture Toughness

Search Result 185, Processing Time 0.022 seconds

A Study on the Impact Fracture Behavior of Side Plate for G/T 35ton Class FRP Vessel (35톤급 FRP선박 외판자재의 충격파괴거동에 관한 연구)

  • Lee, Jin-Jeong
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • no.7 s.25
    • /
    • pp.64-76
    • /
    • 2008
  • This paper describes the failure mechanism and Charpy impact test of Fiber glass Reinforced Plastic composites which it was actually used for side plate of vessel. There are two examinations. The examination I, the specimens which it given temperature range $-25^{\circ}C$-$50^{\circ}C$ and with different initial notch length did impact test and then it compared impact energy(Uc) and impact fracture toughness(GIC). The examination II, the specimens which it putted into fresh water and sea water for scheduled hours did impact test and it compared impact energy(Uc) and impact fracture toughness(GIC). From examination I, it showed that impact energy(Uc) and impact fracture toughness(GIC) were peak at ambient temperature and decrease as temperature reduced. Fracture toughness(GIC) showed increase as initial notch length reduced. From examination II, impact energy(Uc) and impact fracture toughness(GIC) tended to increase which specimens putted in fresh water compared with sea water and maximum tolerance rate tend to decrease as permeation hours will be long.

  • PDF

A Study on the Impact Fracture Behavior of Side Plate of 35 Ton Class FRP Ship (35톤급 FRP선박 외판재의 충격파괴거동에 관한 연구)

  • Kim, H.J.;Lee, J.J.;Koh, S.W.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.137-142
    • /
    • 2005
  • The effects of temperature and initial crack length on impact fracture behavior of side plate material of 35 ton class FRP ship, which are composed by glass fiber and unsaturated polyester resin, were investigated. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decrease in temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increase in initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$,. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/EP composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyester resin. Further, decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photograph of impact fracture surface.

  • PDF

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

Impact Toughness and Fracture Behavior in Non-Heat Treating Steels Containing Bainite (베이나이트 함유 비조질강의 충격인성 및 파괴거동)

  • Cho, Ki-Sub;Kwon, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Impact toughness and fracture behavior were studied in five kinds of non-heat treating steels containing bainite; standard(0.25C-1.5Mn-0.5Cr-0.2Mo-0.15V), high V(0.3V), Ni(0.5Mn-2Ni), W(0.4W instead of Mo), and high C-Ni(0.35C-0.5Mn-2Ni) steels. The good hardness and impact toughness balance was exhibited in the $1100^{\circ}C$-rolled condition, while the impact toughness was deteriorated due to coarse grained microstructure in the $1200^{\circ}C$-rolled condition. The impact toughness decreased with increasing the hardness in all steels studied. The fracture behavior was also basically identical, that is, the fracture area was divided into 3 zones; shear and fibrous zone, fracture transition zone with ductile dimples and cleavage cracks, where the cracks initiate and grow to critical size, unstable cleavage fracture propagation zone. The energy absorbed for the critical crack formation through the plastic deformation inside the plastic zone in front of the notch root contributed to a mostly significant portion of the total impact energy.

An Evaluation of Notch Shpae for Estimation of Available $K_{1d}$ by Instrumented Charpy Impact Test (유효 $K_{1d}$ 산정을 위한 샬피 충격시험편의 노치형상에 관한 연구)

  • 우창기;강동명;이하성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.135-143
    • /
    • 1999
  • This investigation evaluates effects of notch depth, fatigue precrack length and side groove in impact specimen for estimation of a valid K1d by instrumented Charpy impact test. Specimen material is 6005-T6. for notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm , dynamic fracture toughness [$K_{1d,(1)}$] obtained by crack initiation load($P_m$) should be used. Dynamic fracture toughness of side grooved specimens are overestimated to that of standard impact specimen about 15 %-20%. It is confirmed that the formula of dynamic fracture toughness obtained by impact absorbed energy is inappropriate for ductile materials.

  • PDF

Evaluation of Fracture Toughness of Pressure Vessel Steel Using Charpy Impact Test Specimens (Charpy 충격시편을 이용한 압력용기 재료의 파괴인성 측정)

  • Han, Dae-June;Park, Sun-Pil
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • The fracture toughness of SA 533 Grade B Class 1 steel has been studied with the Charpy impact test specimens in a range of temperature between -4$0^{\circ}C$ and 288$^{\circ}C$. The dynamic fracture toughness is measured by the instrumented precracked Charpy impact test while the static fracture toughness is by the 3-point bend test based on the unloading compliance method. The results are compared with the data obtained from the large specimens. It is known through the studies that temperature dependence of the appropriate (a low bound) value of the fracture toughness can be estimated by taking the static fracture toughness above the transition temperature and the dynamic fracture toughness below the temperature and it is also shown that the tests are satisfied with the requirements of ASTM E 813 when the side-groove is more than 14%.

  • PDF

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

Impact of temperature cycling on fracture resistance of asphalt concretes

  • Pirmohammad, Sadjad;Kiani, Ahad
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.541-551
    • /
    • 2016
  • Asphalt pavements are exposed to complex weather conditions and vehicle traffic loads leading to crack initiation and crack propagation in asphalt pavements. This paper presents the impact of weather conditions on fracture toughness of an asphalt concrete, prevalently employed in Ardabil road networks, under tensile (mode I) and shear (mode II) loading. An improved semi-circular bend (SCB) specimen was employed to carry out the fracture experiments. These experiments were performed in two different weather conditions namely fixed and cyclic temperatures. The results showed that consideration of the impact of temperature cycling resulted in decreasing the fracture toughness of asphalt concrete significantly. Furthermore, the fracture toughness was highly affected by loading mode for the both fixed and cyclic temperature conditions studied in this paper. In addition, it was found that the MTS criterion correctly predicts the onset of fracture initiation although this prediction was slightly conservative.

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

A Study on the Impact Fracture Toughness of Epoxy Matrix Composites (에폭시기지 복합재료의 충격파괴인성에 관한 연구)

  • Kim, Jae-Dong;Jeon, Jin-Tak;Koh, Sung-Wi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF