• 제목/요약/키워드: Impact Damping

검색결과 326건 처리시간 0.024초

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

DROP IMPACT ANALYSIS OF PLATE-TYPE FUEL ASSEMBLY IN RESEARCH REACTOR

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Lee, Byung-Ho;Oh, Jae-Yong;Tahk, Young-Wook
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.529-540
    • /
    • 2014
  • In this research, a drop impact analysis of a fuel assembly in a research reactor is carried out to determine whether the fuel plate integrity is maintained in a drop accident. A fuel assembly drop accident is classified based on where the accident occurs, i.e., inside or outside the reactor, since each occasion results in a different impact load on the fuel assembly. An analysis procedure suitable for each drop situation is systematically established. For an accident occurring outside the reactor, the direct impact of a fuel assembly on the pool bottom is analyzed using implicit and explicit approaches. The effects of the key parameters, such as the impact velocity and structural damping ratios, are also studied. For an accident occurring inside the reactor, the falling fuel assembly may first hit the fixing bar at the upper part of the standing fuel assembly. To confirm the fuel plate integrity, a fracture of the fixing bar should be investigated, since the fixing bar plays a role in protecting the fuel plate from the external impact force. Through such an analysis, the suitability of an impact analysis procedure associated with the drop situation in the research reactor is shown.

버킷 엘리베이터 체인의 동특성 평가 (Dynamic Characteristic Evaluation of the Bucket Elevator Chain Pin and Plate)

  • 김창욱;이동우;박승빈;송정일
    • 한국정밀공학회지
    • /
    • 제34권3호
    • /
    • pp.211-215
    • /
    • 2017
  • This research analyzes bucket elevator roller chain pins by finite element (FE) analysis and static structural analysis for a lightweight pin design. The stress distribution of light weight roller chain pins under static load is analyzed for safety factors and damping effect. The results show that the stress distribution is higher on the plate than on the bush pin. In order to compare experimental and FE analysis results, a light weight design approach was used to produce a prototype base pin. Because the inner diameter of the pin was different, the impact damping effect was most appropriate when the inner diameter was 34.05 mm, and it is used as basic research data on the impact of the roller chain and sprocket.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.

Experimental study on models of cylindrical steel tanks under mining tremors and moderate earthquakes

  • Burkacki, Daniel;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.175-189
    • /
    • 2019
  • The aim of the study is to show the results of complex shaking table experimental investigation focused on the response of two models of cylindrical steel tanks under mining tremors and moderate earthquakes, including the aspects of diagnosis of structural damage. Firstly, the impact and the sweep-sine tests have been carried out, so as to determine the dynamic properties of models filled with different levels of liquid. Then, the models have been subjected to seismic and paraseismic excitations. Finally, one fully filled structure has been tested after introducing two different types of damages, so as to verify the method of damage diagnosis. The results of the impact and the sweep-sine tests show that filling the models with liquid leads to substantial reduction in natural frequencies, due to gradually increasing overall mass. Moreover, the results of sweep-sine tests clearly indicate that the increase in the liquid level results in significant increase in the damping structural ratio, which is the effect of damping properties of liquid due to its sloshing. The results of seismic and paraseismic tests indicate that filling the tank with liquid leads initially to considerable reduction in values of acceleration (damping effect of liquid sloshing); however, beyond a certain level of water filling, this regularity is inverted and acceleration values increase (effect of increasing total mass of the structure). Moreover, comparison of the responses under mining tremors and moderate earthquakes indicate that the power amplification factor of the mining tremors may be larger than the seismic power amplification factor. Finally, the results of damage diagnosis of fully filled steel tank model indicate that the forms of the Fourier spectra, together with the frequency and power spectral density values, can be directly related to the specific type of structural damage. They show a decrease in the natural frequencies for the model with unscrewed support bolts (global type of damage), while cutting the welds (local type of damage) has resulted in significant increase in values of the power spectral density for higher vibration modes.

진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(I) -가소화 폴리염화비닐의 동적점탄성과 진동흡수성능- (Development of Vibraction and Impact Noise Dampling Wood-based Composites(I) -Dynamic Mechanical and Vibration Damping Properties of Plasticized PVC-)

  • 이현종
    • 임산에너지
    • /
    • 제17권1호
    • /
    • pp.36-46
    • /
    • 1998
  • 이 연구는 점탄성 고분자재료를 사용하여 진동·충격음 흡수성능을 지니는 목질계 복합재료의 제조를 목적으로, 가소화 PVC의 동적점탄성 및 고분자 적층 복합체의 진동흡수성능에 미치는 고분자의 점탄성의 영향을 검토하였다. 가소제는 디옥틸프탈레이트(DOP)를 사용하여, 20∼140 phr까지 첨가하였다. 고분자의 동적점탄성의 측정은 Rheovibron을 사용하여 110Hzdml 인장진동을 가하여, -100∼150℃까지 매분 1℃를 상승시키면서 측정하였다. PVC와 DOP는 전조성에서 완전상용성이었으며, T(E"max)와 T(tan δmax)는 가소제의 첨가량이 증가함에 따라 저온 측으로 이동하였다. 고분자 적층 복합체의 진동흡수성능은 Rheovibron을 개조한 양단지지 중심하중에 의한 강제 휨진동법 및 공진법에 하나인 양단자유 휨진동법을 사용하였다. 샌드위치구조 복합체의 진동흡수계수(tanδc)는 고분자의 손실계수(tanδ)와 정의 상관성을 나타내었으며, 피복체의 진동흡수계수는 고분자의 손실탄성률(E")에 의존하는 경향을 나타내었다. 또한 샌드위치구조 복합체의 대수감쇠율(Δc)은 tanδc곡선과 유사한 곡선을 나타내었다.

  • PDF

Power System Rotor Angle Stability Improvement via Coordinated Design of AVR, PSS2B, and TCSC-Based Damping Controller

  • Jannati, Jamil;Yazdaninejadi, Amin;Nazarpour, Daryush
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.341-350
    • /
    • 2016
  • The current study is dedicated to design a novel coordinated controller to effectively increase power system rotor angle stability. In doing so, the coordinated design of an AVR (automatic voltage regulator), PSS2B, and TCSC (thyristor controlled series capacitor)-based POD (power oscillation damping) controller is proposed. Although the recently employed coordination between a CPSS (conventional power system stabilizer) and a TCSC-based POD controller has been shown to improve power system damping characteristics, neglecting the negative impact of existing high-gain AVR on the damping torque by considering its parameters as given values, may reduce the effectiveness of a CPSS-POD controller. Thus, using a technologically viable stabilizer such as PSS2B rather than the CPSS in a coordinated scheme with an AVR and POD controller can constitute a well-established design with a structure that as a high potential to significantly improve the rotor angle stability. The design procedure is formulated as an optimization problem in which the ITSE (integral of time multiplied squared error) performance index as an objective function is minimized by employing an IPSO (improved particle swarm optimization) algorithm to tune adjustable parameters. The robustness of the coordinated designs is guaranteed by concurrently considering some operating conditions in the optimization process. To evaluate the performance of the proposed controllers, eigenvalue analysis and time domain simulations were performed for different operating points and perturbations simulated on 2A4M (two-area four-machine) power systems in MATLAB/Simulink. The results reveal that surpassing improvement in damping of oscillations is achieved in comparison with the CPSS-TCSC coordination.

의료용 로봇의 미진동제어를 위한 가변감쇠형 동조질량감쇠기 기술 개발 (Developing Tuned Mass Damper of Adjustable Damping Type to Control the Vibrations of Medical Robots)

  • 차운용;전종균;박상곤;한현희
    • 한국소음진동공학회논문집
    • /
    • 제24권9호
    • /
    • pp.706-715
    • /
    • 2014
  • Recently, the medical community has been enthusiastically welcoming robots that are able to provide high-quality medical services across the board, including assisting the surgeons during surgeries. In response, many higher education institutions and research facilities started to conduct various experiments and studies about these robots. During such research, it was discovered that the arm of one particular robot type that is being developed to assist surgeries are prone to vibrate even from the weakest impact, in addition to other residual vibration problems. We attempted to reduce such dynamic response by using a MF-TMD that is produced by adding magnetic fluid to ECD. We verified the MF-TMD's performance by testing it within various frequency bands and attenuations. We then designed a cantilever that was structurally similar to the robot's arm. We attached the MF-TMD to this cantilever and conducted a pilot experiment, which validated our hypothesis that MF-TMD will reduce the robot arm's vibrations through its optimal damping ratio. Henceforth, we attached the MF-TMD to the robot arm in question and conducted a performance experiment in which we tuned the MF-TMD's frequency and damping factor to its optimal level and measured the vibrations of the arm. The experiment demonstrated that the vibrations that occurred whenever the arms rotated were significantly reduced.

Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP

  • Naghipour, M.;Mehrzadi, M.
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.457-468
    • /
    • 2007
  • Analytical and experimental investigation on dynamic properties of extra lightweight concrete sandwich beams reinforced with various lay ups of carbon reinforced epoxy polymer composites (CFRP) are discussed. The lightweight concrete used in the core of the sandwich beams was made up of extra lightweight aggregate, Lica. The density of concrete was half of that of the ordinary concrete and its compressive strength was about $100Kg/cm^2$. Two extra lightweight unreinforced (control) beams and six extra lightweight sandwich beams with various lay ups of CFRP were clamped in one end and tested under an impact load. The dimension of the beams without considering any reinforcement was 20 cm ${\times}$ 10 cm ${\times}$ 1.4 m. These were selected to ensure that the effect of shear during the bending test would be minimized. Three other beams, made up of ordinary concrete reinforced with steel bars, were tested in the same conditions. For measuring the damping capacity of sandwich beams three methods, Logarithmic Decrement Analysis (LDA), Hilbert Transform Analysis (HTA) and Moving Block Analysis (MBA) were applied. The first two methods are in time domain and the last one is in frequency domain. A comparison between the damping capacity of the beams obtained from all three methods, shows that the damping capacity of the extra lightweight concrete decreases by adding the composite reinforced layers to the upper and lower sides of the beams, and becomes most similar to the damping of the ordinary beams. Also the results show that the stiffness of the extra lightweight concrete beams increases by adding the composite reinforced layer to their both sides and become similar to the ordinary beams.