• Title/Summary/Keyword: Impact Collapse Characteristics

Search Result 63, Processing Time 0.024 seconds

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Axial Impact Collapse Analysis of Spot Welded Hat Shaped Section Members

  • Yang, In-Young;Cha, Cheon-Seok;Kang, Jong-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.180-191
    • /
    • 2001
  • The widely used spot welded sections of automobiles(hat and double hat shaped section members) absorb most of the energy in a front-end collision. The sections were tested with respect to axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thicknesses, width ratios and spot weld pitches on the flange were tested at high impact velocity(7.19m/sec and 7.94m/sec) which simulates an actual car crash. Characteristics of collapse have been reviewed and structures for optimal energy absorbing capacity is suggested.

  • PDF

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

An Experimental Study on the Impact Collapse Characteristics of CFRP Composite Circular Structures (탄소섬유강화 복합재료 원통부재의 충격압궤특성에 관한 실험적 연구)

  • 김영남;양현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.1
    • /
    • pp.127-137
    • /
    • 2001
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRf (Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine) and impact compression tests have been carried out using the vertical crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect the energy absorption capability of CFRP tubes.

  • PDF

A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight (경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구)

  • Hwang, Woo-Chae;Sim, Jae-Ki;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

Dynamic Characteristics of CFRP Structure Member According to Change the Stacking Angle and Shape (적층각 및 형상 변화에 따른 CFRP 구조부재의 동적 특성)

  • Yeo, In-Goo;Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.388-393
    • /
    • 2013
  • Carbon fiber reinforced plastic (CFRP) has many desirable qualities, including being lightweight and very strong. These characteristics have led to its use in applications ranging from small consumer products to vehicles. Circular and square CFRP members were fabricated using 8ply unidirectional prepreg sheets stacked at different angles ($[+15^{\circ}/-15^{\circ}]_4$, $[+45^{\circ}/-45^{\circ}]_4$ and $[90]_8$, where $0^{\circ}$ coincides with the axis of the member). Based on the collapse characteristics of a CFRP circular member, the collapse characteristics and energy absorption capability were analyzed. Impact collapse tests were carried out for each section member. In this study, the impact energies at crossheads speeds of 5.52 m/s, 5.14 m/s and 4.57 m/s were 611.52 J, 529.2 J and 419.44 J (circular member) 2.16 m/s, 1.85 m/s and 1.67 m/s are 372.4 J, 274.4 J and 223.44 J (square member). The purpose is to experimentally examine the absorption behavior and evaluation the strength in relation to changes in the stacking configuration when the CFRP circular members with different stacking configurations were exposed to various impact velocities. In addition, the dynamic characteristics were considered.

Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes (차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성)

  • 차천석;정진오;이길성;백경윤;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF