• Title/Summary/Keyword: Impact Ball

Search Result 325, Processing Time 0.028 seconds

Change of Impact by the Early Extension in during a Golf Driver Swing (골프 드라이버 스윙 시 Early Extension에 따른 임팩트 변화)

  • So, Jae-Moo;Kim, Yong-Seok;Kim, Jae-Jung;Yoo, Kwang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • The purpose of this study is to validate that change of impact by the Early Extension in during a golf driver swing. 13 golf players who were diagnosed with symptoms of Early Extension participated in a proactive corrective training programs that took place 3 times a week for a 4 month period. Data was collected by recording 5 pre and 5 post training driver swings and analyzing the data to calculate the change in velocity and its effect in the shot used the TRACK MAN. After the training, the changes of early extension were -0.21 cm in backswing section E2(take away), -0.64 cm in E3(halfway backswing), and -0.94 cm in E4(backswing top). The downswing section changes were -1.34 cm in event E5(halfway downswing), -1.74 cm in E6(impact). Impact force increased and thus club speed increased by 6.32 km/h, ball speed increased by 10.94 km/h, max height decreased by -6.22 m, carry increased by 10.85 m, carry side(left deviation) decreased by 4.84 m, flight time by increased by 0.4 sec, and total length increased by 17.96 m while landing angle decreased by -7.74 deg.

A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES (인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구)

  • Chung, Hyun-Gun;Chung, Moon-Kyu;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

Application of Impact Resonance Test to the Determination of Elastic Modulus and Damping Ratio of Concrete (콘크리트의 탄성계수 및 감쇠비 결정에 대한 충격공진시험 적용)

  • Jung, Beom-Seok;Lee, Jae-Hoan;Kweon, Gi-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.625-632
    • /
    • 2010
  • The moduli of concrete has been determined by various testing methods. The impact resonance (IR) method has been shown to be truly a simple nondestructive testing method which produces consistent results. It is possible to determine not only the modulus but also damping ratio from the IR test. However, the values of elastic modulus and damping ratio of concrete from the test is known to be affected by various test conditions including, specimen support condition, impact steel ball size and sampling rate. In this study, the optimum IR test conditions are suggested and validated experimentally. The test results showed that the recommended test conditions yielded a variation of resonant frequency within ${\pm}0.3%$ and damping ratio ${\pm}10.0%$. In addition, the modulus from the IR test was comparable to that from a static test when the effect of strain amplitude was properly taken into account.

A Study on the Impact Damage and Residual Strength of CFRP Composite Laminates under Low Temperature (저온하에서 CFRP 적층재의 충격 손상과 잔류 강도 -저/고온하에서 CFRP 적층재의 충격 손상을 중심으로 -)

  • Yang, I.Y.;Jung, J.A.;Cha, C.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • In this paper, the effects of temperature change (low and high temperature) on the impact damages of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CF/epoxy orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_6/90^{\circ}\;_6]s$ and $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And CF/PEEK orthotropic laminated plates, which have two-interfaces $[0^{\circ}\;_4/90^{\circ}\;_4]s$. And, this study aims experimentally to present the interrelations between the impact energy vs. impact damages (i.e. delamination area and matrix crack) of CFRP laminates (CF/epoxy, CF/PEEK) subjected to FOD(foreign object damage) under low and high temperatures. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages.

  • PDF

A Comparative Study of Flight Distance in Golf Swing, After the Driver Shot (골프 드라이버 스윙시 볼의 종류에 따른 비거리분석)

  • Ryu, Ho-Yeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • This study is examine and analysis of the most flying and run distance during swing three times with six balls between two amateurs and pro-golfers in golf field in Sungnam airport. During down swing, kinetics variances are velocity of club-head and balls, vertical angular velocity. this scientic data present amateur golfers with recognition of long flying distances for golf balls. Through this study, the conclusions are as follows. 1. Before impact the balls, The club-head velocity of amateur golfers and pro-golfers show 33.34 - 39.53m/s, 39.04 - 42.82m/s respectively during the down swing. But The club-head velocity, flight and Run distances comparative $K_1$ amateur golfer with the pro-golfer are similar. 2. After impact the balls, The balls velocity if amateur golfers show 53.04 - 61.57m/s, The pro-golfers show 62.32 - 63.4m/s respectively during the down swing. In case of $K_3$,$K_4$, After the impact balls velocity comparative The RA brand with other brand are similar, Flight and Run distance are difference. 3. After impact the balls, The balls velocity are difference to other brand but The long flight and Run distance arrange RA, BIG, TITL. 4. In the vertical flight angle of the ball after impact, amateur golfer showed 16.75 - $18.73^{\circ}$. The pro-golfer showed 15.03 - $16.04^{\circ}$. In the vertical flight angle of the balls ideal $12-13^{\circ}$, The long flight and Run distance approach In the vertical flight angle the balls $12-13^{\circ}$.

Investigation of the level difference of floor impact noises through the shape variation of EVA resilient materials with composite floor structure (EVA 완충재의 형상변환을 통한 복합구조의 바닥충격음 변이 조사)

  • Jakin Lee;Seung-Min Lee;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2024
  • The present study aims to investigate the level difference of floor impact noises of composite floor structure using EVA resilient materials. In order to this, four different types of resilient materials were designed combining PET, PP sheet and EVA mount including Flat type, Deck type, Cavity type and Mount type. Totally 9 different samples were made for acoustic measurements which were carried out twice with bang-machine and impact ball as the heavy-weight floor impact noise sources. All the floor impact noise measurements were undertaken at the authentication institution. As a result, concerning Flat and Cavity types, it was found that 2 dB ~ 5 dB of heavy-weight floor impact noise was reduced supplementally when PET was added, while floor impact noise larger than 50 dB was acquired when single resilient material was used. Especially, most high performance was obtained for Mount type with 1st grade of light-weight floor impact noise and 2nd grade of heavy-weight floor impact noise. This is because of material property with low dense PET sound absorption materials which fill all around EVA mounts. Also, it was considered that this results are due to the sound impact absorption by the both EVA mounts and the air cavity between EVA mount and PP sheet. Also, it was found that at least 36 EVA mounts per 1m2 area of resilient panel make more noise reduction of heavy-weight floor impact noises.

Impact Resistance of Steel Fiber-Reinforced Concrete Panels Under High Velocity Impact-Load (고속충격하중을 받는 강섬유보강콘크리트 패널의 내충격성능)

  • Kim, Sang-Hee;Kang, Thomas H.K.;Hong, Sung-Gul;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.731-739
    • /
    • 2014
  • This paper describes the evaluation of the impact performance of steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens with panel thickness to ball diameter (h/d) ratios of 3.5 or less were tested with variables of steel fiber volume fraction, panel thickness, impact velocity, and aggregate size. Test results were compared with each other to evaluate the impact resistance. The results showed that the percentage of weight and surface loss decreased as the steel volume fraction increased. However, the penetration depth increased with up to steel fiber volume fraction of 1.5%. Particularly the results of specimens with 20 mm aggregates showed poorer performance than those with 8 mm aggregates. The results also confirmed that the impact performance prediction formulas are conservative with (h/d) ratios of 3.5 or less. Despite the conservative predictions, the modified NDRC formula and ACE formula predict the impact performance more consistently than the Hughes formula.

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish

Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion (남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이)

  • Pyun, Eun-Kyung;Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.