• Title/Summary/Keyword: Impact Analyses

Search Result 1,408, Processing Time 0.024 seconds

Corporate Social Responsibility Impact on Business Performance through Green Supply Chain Management: Evidence from Guatemala

  • Garcia, Ruben Avila;Park, Byungjoo;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.59-64
    • /
    • 2019
  • The purpose of this research is to examine the relationship between corporate social responsibility (CSR), green supply chain management (GSCM) practices, and business performances. After reviewing the extensive literature, we developed a research model including five constructs: CSR, GSCM practices, environmental, economic and operational performances. We conducted the statistical analyses based on the primary data collected from a survey questionnaire, responded by 93 different company managers in the Republic of Guatemala. Furthermore, we utilized structural equation modeling to analyze the data and to test the hypotheses. The results of the analyses showed that there is a significant influence of CSR on the adoption of GSCM practices. It was also found that GSCM practices have a significant influence on environmental, economic and operational performances. In addition, environmental performance has a significant impact on economic and operational performance. Finally, GSCM has a mediating role on the relationship between CSR and environmental and economic performance, but not with operational performance.

Strain rate effect of steel-concrete composite panel indented by a hemispherical rigid body

  • Zhao, Weiyi;Wang, Lin;Yang, Guotao;Wang, Ziguo;Gao, Zepeng;Guo, Quanquan
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.703-710
    • /
    • 2020
  • This paper presents numerical and theoretical investigations on the strain rate in steel-concrete composite (SC) panels under low-velocity impact of a hemispherical rigid body. Finite element analyses were performed on five specimens with different loading rates. The impact energy was kept constant to eliminate its influence by simultaneously altering the velocity and mass of the projectile. Results show that the strain rate in most parts of the specimens was low and its influence on bearing capacity and energy dissipation was limited in an average sense of space and time. Therefore, the strain rate effect can be ignored for the analyses of global deformation. However, the strain rate effect should be considered in local contact problems. Equations of the local strain and strain rate were theoretically derived.

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

Impact of Quarrying Activities on the Surrounding Vegetation in Ogun State, Nigeria

  • Isiaka Adio, Hassan
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.263-274
    • /
    • 2022
  • Quarrying of rock for construction purposes is a significant industry in any economy but has its negative impact. This study examined the impact of quarry activities on surrounding vegetation in Ogun State. Geographic Information System approach was used to map the various quarry locations present in different Local Government Areas in Ogun State; of which eight sites were selected namely Isara, Idode, Iwaye, Ogbere, Ilagbe, Adelokun Baaki Ake and Igodo. Vegetation composition analyses were carried out on the eight sites using Haga Ultimeter and chlorophyll content analysis. Data were subjected to descriptive and inferential statistics using SAS package (9.4 version). Sixty quarries were identified with Odeda Local Government Area (38.3%) having the highest percentage of quarry. The vegetative compositions analyses showed that Albizia zygia had the highest frequency (7) among identified plants in the quarries. The chlorophyll content of Albizia zygia in the wet season (492.2 mg Chl/m2) was significantly higher than dry season (464.4 mg Chl/m2) in all locations. However, Baaki Ake (Albizia zygia) chlorophyll content was highest among other locations in both seasons. In conclusion Albizia zygia showed highest resistance to quarry activities, hence common among other plants identified around the quarries.

Bumper Stay Design for RCAR Front Low Speed Impact Test (RCAR 전방 저속 충돌시험 대응 범퍼 스테이 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2016
  • RCAR low speed impact test estimates repair cost of the impacted vehicle. In this study, for a mid-size vehicle front body model, structural performance for RCAR low speed impact were analyzed with changing the bumper stay shape and size. First, for improving the impact load transfer mechanism to side member the stay rear section shape at connecting area with side member was modified and the stay outer was redesigned to be normal to the barrier. Next, the investigation on stay thickness effect was carried out and the performances of several models with different forming shape were compared. The final design showed 13mm decrease in the maximum barrier intrusion distance and greatly reduced side member deformation. Additional analyses explained the validity of the final design.

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.

Optimization of Bumper Beam Section of Crashworthiness (충돌성능을 고려한 승용차 범퍼빔 단면의 최적화)

  • Kang, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Finite element impact analysis for the design of structurally dissipating rock-shed

  • Zhang, Yi;Toutlemonde, Francois;Lussou, Philippe
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.109-132
    • /
    • 2009
  • This paper presents finite element impact analysis for the design of Structurally Dissipating Rock-shed (SDR), an innovative design of reinforced concrete rock-shed. By using an appropriate finite element impact algorithm, the SDR structure is modelled in a simplified but efficient way. The numerical results are firstly verified through comparisons with the results of the experiments recently realized by ESIGEC and TONELLO I.C. It is shown that, using this impact algorithm, it is possible to correctly predict the SDR structural behaviour under different rock-fall impact conditions. Moreover, the numerical results show that the slab centre is the critical impact location for reinforced concrete slab design. The impact analyses have thus been focused on the impacts at the slab centre for the SDR structural optimization. Several series of parametric studies have been carried out with respect to load cases and engineering parameters choices. These numerical results support the robustness of the new SDR concept, and serve to optimize SDR structure and improve its conventional engineering design, especially for ensuring the slab punching shear resistance.