• 제목/요약/키워드: Immunostimulatory activity

검색결과 78건 처리시간 0.032초

Immunostimulatory Activity of Solanum nigrum Through TLR4-Mediated JNK Activation in RAW264.7 Cells

  • Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.88-88
    • /
    • 2022
  • In this study, we investigated the effect of Solanum nigrum aerial parts (SNAP) on macrophage activation and macrophage autophagy in RAW264.7 cells. SNAP increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. TLR4 inhibition blocked SNAP-mediated production of immunostimulatory factors. In addition, the JNK inhibition reduced the SNAP-mediated production of immunostimulatory factors, and the SNAP-mediated JNK activation was blocked by the TLR4 inhibition. SNAP activated macrophage autophagy. TLR4 inhibition blocked SNAP-mediated macrophage autophagy and inhibition of p38 and JNK attenuated SNAP-mediated macrophage autophagy. These findings indicate that SNAP may induce TLR4/JNK-mediated macrophage activation and TLR4/p38 and JNK-mediated macrophage autophagy.

  • PDF

참취에서 분리한 다당의 면역자극 활성 (Immunostimulating Activites of Polysaccharide Fractions isolated from Aster scaber Thunb.)

  • 성수경;이영경;조장원;김은영;강동주;홍희도
    • 한국식품영양학회지
    • /
    • 제28권5호
    • /
    • pp.821-828
    • /
    • 2015
  • ASW0 is a polysaccharide derived from the perennial herb Aster scaber Thunberg. We isolated ASW0, a fraction of crude polysaccharide, by means of ethanol precipitation and dialysis after hot water extraction to investigate its physicochemical properties and immunostimulatory effects. ASW0 contains neutral sugar (45.7%), acidic sugar (51.6%), protein (2.3%), and 2-keto-3-deoxy-D-manno-octonate (KDO) (0.4%). The neutral sugar in ASW0 (in mole percentage) was mainly composed of arabinose (34.5 mol%), glucose (31.1 mol%), galactose (14.9 mol%), and rhamnose (8.1 mol%), which are characteristic of pectic polysaccharides. ASW0 also contained small amounts of xylose, mannose, and fucose. The anti-complementary activity of ASW-0 was similar to that of polysaccharide K (used as positive control). ASW0 exhibited no cytotoxicity in RAW 264.7 macrophages and dramatically increased nitric oxide (NO) production in a dose dependent manner ($0.3{\sim}30{\mu}g/mL$). Also, macrophages stimulated with ASW0 showed enhanced production of immunostimulatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha ($TNF-{\alpha}$) in a dose dependent manner. These results suggest that the ASW0 have a potent immunostimulatory effect and can be used as a natural immune health ingredient.

Identification of Immunostimulatory Oligodeoxynucleotide from Escherichia coli Genomic DNA

  • Choi, Yong-Jun;Lee, Keun-Wook;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.788-793
    • /
    • 2006
  • Bacterial DNA containing immunostimulatory CpG motifs can stimulate antigen-presenting cells to express co-stimulatory molecules and to produce various cytokines in vivo and in vitro. In this study, we fragmented macromolecular E.coli genomic DNA with DNase I, and analyzed the ability of the resulting DNA fragments to induce the NF-${\kappa}B$ activation and humoral immune response. Furthermore, using computational analysis and luciferase assay for synthetic ODNs based on the sequence of the immunostimulatory DNA fragments (DF-ODNs), an active component of DF-ODNs sequences was investigated. Experimental results demonstrated that DF-ODN is optimal for the NF-${\kappa}B$-responsive promoter activation in the mouse macrophage cell line and the humoral immune response in vivo. In agreement with the activity of the DF-ODNs processed by DNase I, a synthetic ODN based on the DF-ODN sequences is potent at inducing IL-12 mRNA expression in primary dendritic cells. These results suggest that the discovery and characterization of a highly active natural CpG-ODN may be achieved by the analyses of bacterial DNA fragments generated by a nuclease activity.

Enzyme Hydrolysates of Ginseng Marc Polysaccharides Promote the Phagocytic Activity of Macrophages Via Activation of TLR2 and Mer Tyrosine Kinase

  • Seo, Jeong Yeon;Choi, Ji Won;Lee, Jae Yeon;Park, Young Shik;Park, Yong Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.860-873
    • /
    • 2018
  • Although ginseng marc is a by-product obtained during manufacturing of various commercial ginseng products and has been routinely discarded as a waste, it still contains considerable amounts of potential bioactive compounds, including saponins and polysaccharides. Previously, we reported that ginseng oligosaccharides derived from ginseng marc polysaccharides by enzymatic hydrolysis exert immunostimulatory activities in macrophages and these activated macrophages are in turn able to inhibit the growth of skin melanoma cells by inducing apoptosis. In the present study, a more detailed investigation of the immunostimulatory activity and underlying action mechanisms of an enzymatic hydrolysate (GEH) containing these oligosaccharides derived from ginseng marc polysaccharides was performed. The levels of proinflammatory cytokines and anti-inflammatory cytokines were measured in GEH-stimulated RAW264.7 macrophages using RT-PCR analysis and ELISA. The expression levels of Toll-like receptor 2 (TLR2) and TLR4, Dectin-1, and MerTK were measured by RT-PCR analysis or western blot analysis, and the phagocytic activities of GEH-challenged bone marrow-derived macrophages toward apoptotic Jurkat cells were assayed using fluorescence microscopy. GEH induced the production of both proinflammatory cytokines $TNF-{\alpha}$ and IL-6, and anti-inflammatory cytokine IL-10 in RAW 264.7 cells. The expression of the TLR2 and MerTK mRNAs was increased upon GEH treatment. Phagocytosis of apoptotic Jurkat cells was enhanced in GEH-treated macrophages. Based on the results, this enzymatic hydrolysate (GEH) containing oligosaccharides exerts immunostimulatory effects by maintaining the balance between M1 and M2 cytokines, facilitating macrophage activation and contributing to the efficient phagocytosis of apoptotic cells. Therefore, the GEH could be developed as value-added, health-beneficial food materials with immunostimulatory effects.

Isolation and Characterization of an Immunopotentiating Factor from Lactobacillus plantarum in Kimchi: Assessment of Immunostimulatory Activities

  • Lee, Jong-Hwa;Kweon, Dae-Hyuk;Lee, Seung-Cheol
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.877-883
    • /
    • 2006
  • The immunostimulatory activities of Lactobacillus plantarum, the major microorganism in kimchi fermentations were investigated. Five strains of L. plantarum exhibited weak immunopotentiating activity, but L. plantarum PS-21 showed as strong a mitogenic activity as Bifidobacterium adolescentis M101-4, a known positive strain. It is of interest that, L. plantarum PS-21 stimulated proliferation of Peyer's patch cells, one of the most important tissues in the gut-associated lymphoreticular system. Cell' wall fractions from L. plantarum PS-21 also showed strong mitogenic activity compared with the soluble cytoplasmic fraction. A peptidoglycan fraction (PG) extracted from the cell wall of L. plantarum PS-21 was identified as an active mitogenic component when used in murine lymph node and spleen cell test systems. PG showed dose-dependent mitogenic activity and significantly enhanced antibody production in lymph node cells when studied in vitro. The lysosomal enzyme activity of murine peritoneal macrophages was increased when analyzed following injection of PG to the host animal. Furthermore, PG enhanced the production of cytokines such ($TNF-{\alpha}$ and IL-6) in the in vitro culture of RAW 264.7 macrophage cells.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF

Effect of Hovenia dulcis branches on Macrophage Activation and Macrophage Autophagy in RAW264.7 Cells

  • Ju-Hyeong Yu;Min Yeong Choi;Seung Woo Im;Hyeok Jin Choi;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.93-93
    • /
    • 2022
  • Hovenia dulcis, one of the traditional medicinal plants, is currently being used as a functional ingredient for the development of health functional foods that protects the liver from alcohol damage in Korea. A variety of pharmacological effects of Hovenia dulcis have been reported so far, but studies on immune-enhancing activity are insufficient. Thus, in this study, we report that Hovenia dulcis branches (HDB) induce the activation of macrophages. HDB increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. TLR4 inhibition blocked HDB-mediated production of immunostimulatory factors. In addition, the JNK inhibition reduced the HDB-mediated production of immunostimulatory factors, and the HDB-mediated JNK activation was blocked by the TLR4 inhibition. HDB increased the level of LC3-II and p62/SQSTM1. TLR4 inhibition blocked HDB-mediated increase in the level of LC3-II and p62/SQSTM1. These findings indicate that HDB may induce TLR4/JNK-dependent macrophage activation and TLR4-dependent macrophage autophagy.

  • PDF

까마귀쪽나무 열매 추출물의 면역증가 및 뼈 건강 효과 (Immunostimulatory and Bone Health-Promoting Activities of Litsea japonica Fruit Extract)

  • 박성진;강준철;이다영;조주현;윤민호
    • 한국식품위생안전성학회지
    • /
    • 제35권3호
    • /
    • pp.284-289
    • /
    • 2020
  • 본 연구는 까마귀쪽나무 열매 추출물이 대식세포인 RAW264.7세포에서의 면역증가 효능과 조골세포인 MC3T3-E1 세포에서 뼈건강 효능에 미치는 효과를 확인하고자 하였다. 면역증가 효능을 알아보기 위해서 까마귀쪽나무열매 열수추출물(LJF-W)과 70% 에탄올추출물(LJF-70E)을 저농도(10 ㎍/mL), 중농도(100 ㎍/mL) 및 고농도(1,000 ㎍/mL)로 각각 사용하였고, 양성대조군으로는 홍삼 진세노사이드(Rg1+Rb1+Rg3 5.5 mg/g)를 이용하여 실험을 진행하였다. 실험 결과 열수추출물(LJF-W)과 70%에탄올추출물(LJF-70E) 처리군에서 NO 생성량이 무처리구 그룹에 비하여 통계적으로 유의하게 증가하였다. 염증성 cytokine인 TNF-α, IL-6, IL-1β의 생성량은 열수추출물(LJF-W)에서 무처리구에 비해 통계적으로 유의하게 증가하였으나, 70% 에탄올추출물(LJF-70E)에서는 차이가 없음을 관찰할 수 있었다. 또한 뼈건강 효능을 확인하기 위해서 까마귀쪽나무열매 추출물에 의한 조골세포인 MC3T3-E1세포의 세포증식능을 확인한 결과, 열수추출물과 70%에탄올추출물 처리군에서 조골세포 증식능이 무처리구에 비하여 통계적으로 유의하게 증가하였다. 이 결과를 통해 까마귀쪽나무열매 열수추출물(LJF-W)이 면역증가와 뼈건강에 대한 효능성분으로 가능성이 있음을 확인하였다.

김치 유산균 발효 혼합생약재 추출물의 강화된 대식세포 활성 (Enhanced Macrophage Stimulatory Activities of Extracts from Kimchi Lactic Acid Bacteria-Fermented Mixed Herbal Medicines)

  • 김가을에;신현영;정세빈;하은지;정은진;신지영;유광원
    • 한국식품영양학회지
    • /
    • 제35권6호
    • /
    • pp.399-410
    • /
    • 2022
  • To enhance the bioavailability and bioactivities of mixed herbal medicines (RW), they were fermented with lactic-acid bacteria isolated from kimchi into postbiotics (FRW). Then, from the results of the 16s rRNA sequencing analysis, lactic acid bacteria isolated from kimchi were identified to be of two species, namely Lactobacillus sakei and Leuconostoc mesenteroides. The FRW prepared from the RW were extracted using hot water (HW) and 70% EtOH (EtOH) for comparison of their macrophage-stimulating activities. Based on a comparison of the activities of the FRW extracts, nitric oxide (NO) production of HW was significantly higher than that in EtOH. An analysis of the chemical properties of the extracts showed that HW had higher contents of neutral sugar and uronic acid than EtOH as well as contained a large amount of glucose. In addition, crude polysaccharide (CP) was prepared to enhance the macrophage-stimulating activity. The FRW-CP not only secreted immunostimulatory mediators but also increased the expression of immunostimulatory genes (iNOS, TNF-α, MCP-1, and IL-6). The fractionated FRW-CP contained about 90% neutral sugars, and these sugars were mainly composed of glucose, galacturonic acid, and arabinose. Thus, FRW prepared by fermentation of RW with kimchi lactic acid bacteria were found to be immunostimulatory modulators.

Structural characteristics of a red ginseng acidic polysaccharide rhamnogalacturonan I with immunostimulating activity from red ginseng

  • Lee, Sue Jung;In, Gyo;Han, Sung-Tai;Lee, Mi-Hyang;Lee, Jong-Won;Shin, Kwang-Soon
    • Journal of Ginseng Research
    • /
    • 제44권4호
    • /
    • pp.570-579
    • /
    • 2020
  • Background: Many researchers reported that the various immune activities of red ginseng are due to acid polysaccharides. But, the exact structural characteristics of the acidic polysaccharide in red ginseng have not been fully elucidated. Therefore, we isolated the acidic polysaccharide from red ginseng and characterized the structural property of the active moiety of this polysaccharide, which contributes to the immunostimulatory activity of red ginseng. Methods: A polysaccharide (RGP-AP-I) was purified from red ginseng via size-exclusion chromatography using Sephadex G-100. Immunostimulatary activity of RGP-AP-I was investigated via anti-complementory and macrophage stimulatory activity. The structure of RGP-AP-I was characterized by HPLC, sugar composition, β-glucosyl Yariv reagent and methylation analysis. Results: Peritoneal macrophages stimulated using RGP-AP-I significantly augmented the production of various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factor (TNF)-α. The primary structure of RGP-AP-I was elucidated by assessing its sugar composition and methylation analysis. RGP-AP-I is a 96 kDa acidic polysaccharide, and comprises nine different monosaccharides, which mainly include sugars such as rhamnose (Rha, 9.5%), galacturonic acid (GalA, 18.4%), galactose (Gal, 30.4%), and arabinose (Ara, 35.0%). RGP-AP-I exhibited an considerable reaction with the β-glucosyl Yariv reagent, revealing the presence of arabino-β-3,6-galactan. Methylation analysis indicated that RGP-AP-I comprises 21 different glycosyl linkages, such as 3-, 4-, 6- and 3,6-linked Galp; 5-linked Araf; 2,4-linked Rhap; and 4-linked GalAp, which are characteristics of rhamnogalacturonan I (RG-I). Conclusion: we assumed that the immunostimulatory activity of RGP-AP-I may be due to the RG-I structure, which comprises a main chain with a repeating linkage unit, [→2)-Rhap-(1→4)-GalAp-(1→] and three groups of side chains such as (1→5)-linked arabinan, (1→4)-linked galactan, and arabino-β-3,6-galactan, which branch at the C(O)4 positions of Rha residues in the main chain of RGP-AP-I.