• Title/Summary/Keyword: Immunological technology

Search Result 119, Processing Time 0.033 seconds

Antioxidant and Anti-inflammatory Activities of Allium victorialis subsp. platyphyllum Extracts

  • Lee, Je-Hyuk;Choi, Soo-Im;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.796-801
    • /
    • 2007
  • This study was conducted to investigate antioxidant activity and anti-immunological inflammatory effect of Allium victorialis subsp. platyphyllum extracts (AVPEs). Antioxidant activities of AVPEs were determined by free radical scavenging assay and reducing power test. Leaf-part extract had comparatively better antioxidant activity than other-part extracts. Antioxidant activity of extracts had protective effect for human umbilical vein endothelial cells (HUVECs) against superoxide anions secreted from activated neutrophils. Also, we observed AVPEs had inhibitory effects on the adherence of monocytic THP-1 to HUVEC monolayer to the basal level. Inhibitory effect on cell adhesion was caused by suppression of tumor necrosis factor-${\alpha}\;(TNF-{\alpha})-upregulated$ expression of vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin in HUVECs. From these results, we expect to support the evidence of anti-immunological inflammatory effects of Allium victorialis subsp. platyphyllum (AVP) as a Korean traditional pharmaceutical.

Production and characterization of monoclonal antibodies (MAb) against flounder serum immunoglobulin (Ig)

  • Jang, Han-Na;Cho, Young-Hye;Park, Sang-Hoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.446-446
    • /
    • 2000
  • Specific polyclonal and/or monoclonal antibodies (MAbs) to immunoglobulins (Igs) and their subunits have proved to be valuable tools in immunological research and in immunological assays. In this study, we developed and characterized MAbs against flounder serum Igs. To obtain the pure flounder serum Igs, mouse IgG (mIgG) was immunized to flounder. Flounder Igs were purified by using mIgG-agarose affinity column chromatography. The structure of purified flounder Ig was observed, on denatured SDS-PAGE, to be composed of two heavy chains (77 and 72 kd) and two light chains (28 and 26 kd). MAbs were produced by fusion of myeloma cells (SP2/0) with Balb/c mouse spleen cells previously primed with the flounder Igs. Finally, three hybridoma clones, FIM 511, FIM 519 and FIM 562 were established to recognize both 2 heavy chains, 26 kd of light chain and 28 kd of light chain, respectively. On the other hand, the flounder immune sera collected on the weekly basis were tested on ELISA and immunoblot analysis whether boosting effect is present in flounder humoral immune system. As a result, the secondary immune response in flounder was ascertained on ELISA, but not on immunoblot analysis. Further, we observed an alteration of serum protein levels following immunization. Our MAbs and basic information on flounder humoral immune system obtained in this study will be helpful to control and monitor the efficiency of fish vaccines and therapeutic process of flounder diseases.

  • PDF

Effects of Housing Systems on Physiological and Immunological Parameters in Laying Hens

  • Kang, Sung-Young;Ko, Young-Hyun;Moon, Yang-Soo;Sohn, Sea-Hwan;Jang, In-Surk
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The aim of this study was to assess the effects of housing systems on physiological and immunological responses as stress indicators in laying hens. A total of 500 White Leghorn aged 16 weeks were allotted into ten conventional cages (10 birds/cage and 810 $cm^2$/bird) and four floor pens (100 birds/pen and 2,800 $cm^2$/bird) for 24 weeks. The hens housed in conventional cages with higher stocking density resulted in a significantly (P<0.05) lower BW compared with those housed in floor pens with lower stocking density without affecting the relative weights of immune organs between housing conditions. In plasma biochemical values, cholesterol and corticosterone were significantly (P<0.05) lower in the hens housed in floor pens compared with those housed in conventional cages. In pro-inflammatory cytokines, hepatic interleukin (IL)-10 and interferon-gamma (IFN-${\gamma}$) levels were significantly (P<0.05) higher in the hens housed in conventional cages compared with those kept in floor pens. Splenic and thymic IFN-${\gamma}$ expression was significantly (P<0.05) up-regulated in the hens kept in conventional cages compared with those kept in floor pens without affecting IL-1, IL-10, lipopolysaccharide- induced tumor necrosis factor-${\alpha}$ factor (LITAF) and inducible nitric oxide synthase (iNOS). In the bursa of Fabricius, IL-10 and iNOS expression of the hens housed in conventional cages were significantly (P<0.05) higher compared with those of the hens housed in floor pens. In conclusion, layers housed in conventional cages enhanced plasma cholesterol, corticosterone and some pro-inflammatory cytokines in the immune organs compared with those in floor pens.

Evaluation of immune responses in dairy cows immunized with an inactivated vaccine for bovine respiratory disease

  • Aganja, Ram Prasad;Seo, Kangseok;Ha, Seungmin;Yi, Young-Joo;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.251-264
    • /
    • 2021
  • Bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV) are the main viral contributors to bovine respiratory disease (BRD) with high mortality and morbidity. BRD control measures include vaccination that modulates immunological profiles reflected in blood cells, serum, and body secretions, such as milk. This study evaluated the immune responses to an inactivated BRD vaccine in lactating cows reared in a natural environment on a dairy farm. The cows were intramuscularly inoculated with the vaccine, and serum, blood, and milk were collected pre-and post-vaccination. Our study revealed a prominent increase in BRSV-specific antibodies both in serum and milk, while the change in BVDV-specific antibodies was insignificant. Serum interleukin (IL)-1β and IL-6 levels significantly decreased, but this change was not reflected in milk. Evaluation of pattern recognition receptors (PRRs) via RT-qPCR revealed downregulation of nucleotide-binding oligomerization domain 2 (NOD2). The concentrations of BRSV antibodies, BVDV antibodies, IL-2, and IL-17A in serum and milk were strongly correlated, implying a concurrent influence on both body fluids. Thus, immunological factors modulated as a result of vaccination generally measured in serum were reflected in milk, demonstrating the suitability of milk evaluation as an alternative approach for immunological observations. Furthermore, the correlation between BRSV antibodies and NOD2 and that between BVDV antibodies and toll-like receptor (TLR) 2, TLR3, TLR4, and TLR5 imply the possible role of PRRs for the assessment of the immune response developed in immunized cows reared on the farm.

Advances in Rapid Detection Methods for Foodborne Pathogens

  • Zhao, Xihong;Lin, Chii-Wann;Wang, Jun;Oh, Deog Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.297-312
    • /
    • 2014
  • Food safety is increasingly becoming an important public health issue, as foodborne diseases present a widespread and growing public health problem in both developed and developing countries. The rapid and precise monitoring and detection of foodborne pathogens are some of the most effective ways to control and prevent human foodborne infections. Traditional microbiological detection and identification methods for foodborne pathogens are well known to be time consuming and laborious as they are increasingly being perceived as insufficient to meet the demands of rapid food testing. Recently, various kinds of rapid detection, identification, and monitoring methods have been developed for foodborne pathogens, including nucleic-acid-based methods, immunological methods, and biosensor-based methods, etc. This article reviews the principles, characteristics, and applications of recent rapid detection methods for foodborne pathogens.

Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy

  • Jihong Bae; Kwangcheon Park;You-Me Kim
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.3.1-3.21
    • /
    • 2022
  • Cancer is one of the leading causes of death worldwide and the number of cancer patients is expected to continuously increase in the future. Traditional cancer therapies focus on inhibiting cancer growth while largely ignoring the contribution of the immune system in eliminating cancer cells. Recently, better understanding of immunological mechanisms pertaining to cancer progress has led to development of several immunotherapies, which revolutionized cancer treatment. Nonetheless, only a small proportion of cancer patients respond to immunotherapy and maintain a durable response. Among multiple factors contributing to the variability of immunotherapy response rates, commensal microbiota inhabiting patients have been identified as one of the most critical factors determining the success of immunotherapy. The functional diversity of microbiota differentially affects the host immune system and controls the efficacy of immunotherapy in individual cancer patients. Moreover, clinical studies have demonstrated that changing the gut microbiota composition by fecal microbiota transplantation in patients who failed a previous immunotherapy converts them to responders of the same therapy. Consequently, both academic and industrial researchers are putting extensive efforts to identify and develop specific bacteria or bacteria mixtures for cancer immunotherapy. In this review, we will summarize the immunological roles of commensal microbiota in cancer treatment and give specific examples of bacteria that show anticancer effect when administered as a monotherapy or as an adjuvant agent for immunotherapy. We will also list ongoing clinical trials testing the anticancer effect of commensal bacteria.

An Impaired Inflammatory and Innate Immune Response in COVID-19

  • Park, Sung Ho
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.384-391
    • /
    • 2021
  • The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.

The Effect of Cordycepin on the Production of Pro-inflammatory Cytokines in Mouse Peritoneal Macrophages (코디세핀이 마우스 복강 대식세포에서 전염증성 사이토카인의 생성에 미치는 영향)

  • Seo, Min-Jeong;Kang, Byoung-Won;Kim, Min-Jeong;Lee, Hye-Hyeon;Seo, Kwon-Il;Kim, Kwang-Hyuk;Jeong, Yong-Kee
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.68-72
    • /
    • 2014
  • The effect of cordycepin purified from Cordyceps militaris on macrophage activation was investigated in peritoneal macrophages isolated from C57BL6 mice. Lipopolysaccharide-induced mouse peritoneal cells showed that cordycepin treatment increased the expression of the inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-12, and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), leading to early inflammation-mediated reactions, the activation of immunological responses, and T lymphocyte activation. T lymphocytes, activated by a greater production of IL-6, resulted in antibody-generating immune reactions, suggesting that cordycepin was effective at inducing immunological responses. Consistent with the increase in the inflammation-mediating factors including nitric oxide (NO) and hydrogen peroxide ($H_2O_2$), the toxic response of macrophages was activated and effectively induced inflammation. These findings demonstrate that cordycepin is involved in reducing cell injury provoked by inflammatory reactions. Therefore, these results suggest that cordycepin treatment of mouse peritoneal cells induces inflammation-mediated immunological responses and immunostimulation.