• Title/Summary/Keyword: Immunogenicity

Search Result 241, Processing Time 0.034 seconds

Dead cell phagocytosis and innate immune checkpoint

  • Yoon, Kyoung Wan
    • BMB Reports
    • /
    • v.50 no.10
    • /
    • pp.496-503
    • /
    • 2017
  • The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations.

Current advances in adenovirus nanocomplexes: more specificity and less immunogenicity

  • Kang, Eun-Ah;Yun, Chae-Ok
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.781-788
    • /
    • 2010
  • An often overlooked issue in the field of adenovirus (Ad)-mediated cancer gene therapy is its limited capacity for effective systemic delivery. Although primary tumors can be treated effectively with intralesional injection of conventional Ad vectors, systemic metastasis is difficult to cure. Systemic administration of conventional naked Ads leads to acute accumulation of Ad particles in the liver, induction of neutralizing antibody, short blood circulation half-life, non-specific biodistribution in undesired organs, and low selective accumulation in the target disease site. Versatile strategies involving the modification of viral surfaces with polymers and nanomaterials have been designed for the purpose of maximizing Ad anti-tumor activity and specificity by systemic administration. Integration of viral and non-viral nanomaterials will substantially advance both fields, creating new concepts in gene therapeutics. This review focuses on current advances in the development of smart Ad hybrid nanocomplexes based on various design-based strategies for optimal Ad systemic administration.

Adenovirus vs AAV Vectors for Gene Delivery: Their Advantages and Disadvantages

  • Im Dong-Soo
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.109-115
    • /
    • 2002
  • Gene therapy is to treat and cure diseases by an introduction of therapeutic genes in defective cells or tissues of human body. Gene delivery system, gene expression system, and therapeutic gene are three core elements for gene therapy. The efficient delivery of therapeutic genes and appropriate gene expression are the crucial issues for therapeutic outcome of gene delivery. Because it can be used in common for the treatment and cure of various diseases, gene delivery system is the most important core element for a successful gene therapy. Viruses are naturally evolved to transfer their genomes into host cells efficiently. This ability has made vectorologists exploit viruses as attractive vehicles for the delivery of therapeutic genes. Viral vectors based on adenovirus (Ad) and adeno-associated virus (AAV) have been often used for gene delivery in laboratory. Ad and AAV vectors derived from human DNA viruses differ greatly in their life cycle, expression level and duration of transgenes, immunogenicity, and vector preparation. Both vectors can be used as effective tools for gene therapy and more recently in functional genomics. Here, the characteristics of Ad and AAV vectors are discussed.

  • PDF

Expression of major piroplasm protein(p33)of Theileria sergenti (Korean isolate) and its immunogenicity in guinea pigs

  • Kang, Seung-Won;Kweon, Chang-Hee;Choi, Eun-Jin;Yoon, Yong-Dhuk
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.277-283
    • /
    • 1999
  • To investigate the development of a subunit vaccine against theileriosis in cattle, the DNA fragments encoding piroplasm surface protein (p33) of Theileria sergenti of a Korean isolate were expressed in baculoviruses. The expressed p33 was characterized by indirect fluorescent antibody (IFA) and western blotting analysis. The expression of p33 was mainly detected on the surface of infected Sf21 cells by IFA. The immunoblotting analysis revealed the presence of a same molecular weight protein band of p33. The antigenicity of expressed polypeptide was further examined through the inoculation of a guinea pig. The sera of guinea pigs immunized with p33 expressed cell Iysate showed similar fluorescent antibody patterns and reacted with the same molecular weight protein of T. sergenti in immunoblotting analysis, thus indicating that this protein can be a promising candidate for a subunit vaccine in the future.

  • PDF

PEGYLATION: Novel Technology to Enhance Therapeutic Efficacy of Proteins and Peptides (PEG 접합: 단백질 및 펩타이드 치료제의 약효를 증가시키는 새로운 기술)

  • Park, Myung-Ok;Lee, Kang-Choon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2000
  • Polyethylene glycol (PEG) is a water soluble, biocompatible, non-toxic polymer and PEGylation is a well established technique for the modification of therapeutic proteins and peptides. PEG-protein drugs have been extensively studies in relation to therapies for various diseases: cancer, inflammation and others. The covalent attachment of PEG to proteins and peptides prolonged plasma half-life, reduced antigenicity and immunogenicity, increased thermal and mechanical stability, and prevented degradation by enzymes. Several chemical groups for general and site specific conjugation have been exploited to activate PEG for amino group, carboxyl group, and cysteine groups. PEGylation of many proteins and peptides have been studied to enhance their properties for the potential uses. Also, the different positional isomers in several PEG-proteins have shown the difference in vivo stability and biological indicating that the site of PEG molecule attachment is one of the important factor to develop PEG-proteins as potential therapeutic agents.

  • PDF

ASSESSMENT OF STABILITY AND ALLERGENICITY OF FOOD ALLERGENIC PROTEINS

  • Lee, J-H;Yoon, W-K;Han, S-B;Yun, S-O;Park, S-H;Lee, H-J;Yoon, P-S;Moon, J-S;Kim, H-C
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.180-180
    • /
    • 2002
  • The potential allergenicity of the transgene products in genetically modified organisms (GMOs), has been an important issue. As a part of the risk assessment of GMOs, we investigated the physicochemical stability and the immunogenicity of food allergens to determine their allergenicity.(omitted)

  • PDF

Nanocellulose Applications for Drug Delivery: A Review

  • Lee, Seung-Hwan;Kim, Hyun-Ji;Kim, Jin-Chul
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.141-149
    • /
    • 2019
  • Nanocellulose, which can exist as either cellulose nanocrystals or cellulose nanofibrils, has been used as a biomaterial for drug delivery owing to its non-immunogenicity, biocompatibility, high specific area, good mechanical properties, and variability for chemical modification. Various water-soluble drugs can be bound to and released from nanocelluloses through electrostatic interactions. The high specific surface area of nanocellulose allows for high specific drug loading. Additionally, a broad spectrum of drugs can bind to nanocellulose after facile chemical modifications of its surface. Controlled release can be achieved for various pharmaceuticals when the nanocellulose surface is chemically modified or physically formulated in an adequate manner. This review summarizes the potential applications of nanocelluloses in drug delivery according to published studies on drug delivery systems.

Assessment of allergenicity of genetically modified foods (GMOs)

  • Lee, Jung-Hyun;Yoon, Won-Ki;Han, Sang-Bae;Yun, Si-On;Park, Sun-Hong;Lee, Hyun-Ju;Yoon, Pyung-Seop;Moon, Jae-Sun;Kim, Hyung-Chin;Kim, Hwan-Mook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.267.1-267.1
    • /
    • 2002
  • The potential allergenicity of the transgene products in genetically modified organisms (GMOs). has been an important issue. As a part of the risk assessment of GMOs. we investigated the physicochemical stability and the immunogenicity of food allergens to determine their allergenicity. We have systematically evaluated the stability of food allergens in the gastrointestinal tract by using simple models of gastric (Stimulated gastric fluid) and intestinal (Stimulated intestinal fluid) digestion. (omitted)

  • PDF

The nature of triple-negative breast cancer classification and antitumoral strategies

  • Kim, Songmi;Kim, Dong Hee;Lee, Wooseok;Lee, Yong-Moon;Choi, Song-Yi;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.35.1-35.7
    • /
    • 2020
  • Identifying the patterns of gene expression in breast cancers is essential to understanding their pathophysiology and developing anticancer drugs. Breast cancer is a heterogeneous disease with different subtypes determined by distinct biological features. Luminal breast cancer is characterized by a relatively high expression of estrogen receptor (ER) and progesterone receptor (PR) genes, which are expressed in breast luminal cells. In ~25% of invasive breast cancers, human epidermal growth factor receptor 2 (HER2) is overexpressed; these cancers are categorized as the HER2 type. Triple-negative breast cancer (TNBC), in which the cancer cells do not express ER/PR or HER2, shows highly aggressive clinical outcomes. TNBC can be further classified into specific subtypes according to genomic mutations and cancer immunogenicity. Herein, we discuss the brief history of TNBC classification and its implications for promising treatments.

Generation of a cold-adapted PRRSV with a nucleotide substitution in the ORF5 and numerous mutations in the hypervariable region of NSP2

  • Do, Van Tan;Dao, Hoai Thu;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.85.1-85.6
    • /
    • 2020
  • A cold-adapted porcine reproductive and respiratory syndrome virus (CA-VR2332) was generated from the modified live virus strain VR2332. CA-VR2332 showed impaired growth when cultured at 37℃ with numerous mutations (S731F, E819D, G975E, and D1014N) in the hypervariable region of the NSP2, in which the mutation S731F might play a vital role in viral replication at 30℃. Conserved amino acid sequences of the GP5 protein suggests that CA-VR2332 is a promising candidate for producing an effective vaccine against PRRSV infection. Further studies on replication and immunogenicity in vivo are required to evaluate the properties of CA-VR2332.