• 제목/요약/키워드: Immune-stimulant

검색결과 24건 처리시간 0.019초

Immune Enhancement Effects of Codium fragile Anionic Macromolecules Combined with Red Ginseng Extract in Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1361-1368
    • /
    • 2019
  • Codium fragile is an edible seaweed in Asian countries that has been used as a thrombolytic, anticoagulant, antioxidant, anti-inflammatory, and immune-stimulatory agent. Ginseng has also been known to maintain immune homeostasis and to regulate the immune system via enhancing resistance to diseases and microorganisms. In this study, anionic macromolecules extracted from C. fragile (CFAM) were orally administered with red ginseng extract (100 mg/kg body weight) to cyclophosphamide-induced immunosuppressed male BALB/c mice to investigate the immune-enhancing cooperative effect of Codium fragile and red ginseng. Our results showed that supplementing CFAM with red ginseng extract significantly increased spleen index, T- and B-cell proliferation, NK cell activity, and splenic lymphocyte immune-associated gene expression compared to those with red ginseng alone, even though a high concentration of CFAM with red ginseng decreased immune biomarkers. These results suggest that CFAM can be used as a co-stimulant to enhance health and immunity in immunosuppressed conditions.

손바닥선인장(제주도 기념물 35호) 추출물이 면역계세포의 활성화에 미치는 영향 (Effects of Opuntia ficus-indica extract on immune cell activation)

  • 문창종;김승준;안미정;이선주;정규식;박상준;윤도영;최용경;신태균
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.362-364
    • /
    • 2000
  • Opuntia ficus-indca(Op) extract has been claimed to have several therapeutic properties in oriental medicine including anti-inflammatory and anti-rheumatoid arthritis effects. Little is known of its effect on the activation of immune cells such as T cells and macrophages. To evaluate the functional effect of Op extract on immune cells, we examined whether Op extract stimulates the proliferation of T cells and the secretion of cytokines including IL-1 beta, IL-6 and tumor necrosis factor-alpha in THP-1 cell lines by RT-PCR. Op extract significantly enhanced the proliferation of T cell clone(D10S). Transcription of cytokines including IL-1 beta, IL-6, and TNF-alpha peaked 6 hrs after exposure to Op extract(100g/ml) in the THP-1 cell line and declined and declined thereafter. In an experiment to test the dose dependency of transcription of cytokines, transcription increased at a dose of 10 g/ml and the maximum expression was obtained at 100 g/ml, 6 hrs after exposure to Op extract. These findings suggest that Op extract is a potent stimulant of immune cells including T cells and macrophages, which acts by stimulating T cell proliferation and upregulating cytokines. These phenomena imply that some edible plants may be beneficial to living animals through the activation of immune functions.

  • PDF

백모오가피로부터 분리된 트리터페노이드 및 리그난의 항산화작용 (Antioxidative Activities of Triterpenoids and Lignans from Acanthopanax divaricatus var. albeofructus)

  • 김지연;양기숙
    • 약학회지
    • /
    • 제48권4호
    • /
    • pp.236-240
    • /
    • 2004
  • Acanthopanax species (Araliaceae) traditionally has been used as analgesics, stimulant of immune system, and replenishment of body functions. Acanthopanax divaricatus var. albeofructus is indigenous plant to Korea. The antioxidant activities of compounds from A divaricatus var. albeofructus were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and thiobarbituric acid reactive substance (TBARS) assay on human plasma low-density lipoprotein (LDL). The triterpenoid and lignan constituents from this plant showed antioxidant activities and the lignan, l-sesamin exhibited the most potent antioxidant activity in Cu$^{2+}$ -induced LDL oxidation.n.

오가피류의 시험관내 항산화활성 검색 (Screening of Antioxidant Activity of Acanthopanax species in vitro)

  • 김지연;양기숙
    • 약학회지
    • /
    • 제47권6호
    • /
    • pp.361-364
    • /
    • 2003
  • Acanthopanax species (Araliaceae) has been traditionally used as tonic, analgesic, stimulant of immune system, and replenishment of body function. The antioxidant activities of leaf and root bark of Acanthopanax species were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and thiobarbituric acid reactive substances (TBARS) assay and relative electrophoretic mobility (REM) on human plasma low density lipoproteins (LDL). Acanthopanax divaricatus var. albeofructus and Acanthopanax for. nambunensis showed potent antioxidant activities.

Newly Identified TLR9 Stimulant, M6-395 Is a Potent Polyclonal Activator for Murine B Cells

  • Park, Mi-Hee;Jung, Yu-Jin;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • 제12권1호
    • /
    • pp.27-32
    • /
    • 2012
  • Background: Toll-like receptors (TLRs) have been extensively studied in recent years. However, functions of these molecules in murine B cell biology are largely unknown. A TLR4 stimulant, LPS is well known as a powerful polyclonal activator for murine B cells. Methods: In this study, we explored the effect of a murine TLR9 stimulant, M6-395 (a synthetic CpG ODNs) on B cell proliferation and Ig production. Results: First, M6-395 was much more potent than LPS in augmenting B cell proliferation. As for Ig expression, M6-395 facilitated the expression of both TGF-${\beta}1$-induced germ line transcript ${\alpha}$ ($GLT{\alpha}$) and IL-4-induced $GLT{\gamma}1$ as levels as those by LPS and Pam3CSK4 (TLR1/2 agonist) : a certain Ig GLT expression is regarded as an indicative of the corresponding isotype switching recombination. However, IgA and IgG1 secretion patterns were quite different--these Ig isotype secretions by M6-395 were much less than those by LPS and Pam3CSK4. Moreover, the increase of IgA and IgG1 production by LPS and Pam3CSK4 was virtually abrogated by M6-395. The same was true for the secretion of IgG3. We found that this unexpected phenomena provoked by M6-395 is attributed, at least in part, to its excessive mitogenic nature. Conclusion: Taken together, these results suggest that M6-395 can act as a murine polyclonal activator but its strong mitogenic activity is unfavorable to Ig isotype switching.

Platelet-Activating Factor Potentiates the Activity of Respiratory Burst and Interleukin-1 in Rat Alveolar Macrophages

  • Lee, Ji-Hee
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.251-257
    • /
    • 1995
  • The objective of the present study was to test the effect of platelet-activating factor (PAF) on rat alveolar macrophages. PAF alone did not stimulate superoxide secretion from alveolar macrophages. However, PAF $(10^{-5}\;M)$ significantly enhanced phagocytic activator zymosan-induced superoxide secretion from alveolar macrophages. This enhancement of PAF plus zymosan was 30% above the sum of the separate effects of PAF and zymosan. Similarly, PAF $1.3{\times}(10^{-5}\;M)$ was not a direct stimulant of alveolar macrophages, as it had no stimulatory effect on chemiluminescence generation, but potentiated zymosan-induced activation of chemiluminescence, i.e., 162% above the separate effects of each stimulant. PAF $10^{-16}{\pm}10^{-6}\;M$ also failed to stimulate IL-1 production from alveolar macrophages. In contrast, when both PAF $10^{-10}\;M$ and lipopolysaccharide(LPS) $(1 {\mu}g/ml)$ were added together at the initiation of the culture, IL-1 production was significantly increased indicating the potentiative effects of PAF on IL-1 production by alveolar macrophages. Collectively, these data suggest that PAF alone does not activate the release of bioactive products from alveolar macrophages. However, PAF appears to act as a priming mediator that potentiates stimuli-induced macrophage activity. These novel actions of PAF prove its role as a potent mediator of inflammatory and immune responses in the lung.

  • PDF

Co-immunomodulatory Activities of Anionic Macromolecules Extracted from Codium fragile with Red Ginseng Extract on Peritoneal Macrophage of Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Jung, Seok-Kyu;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.352-358
    • /
    • 2020
  • In this study we investigated the immune effects of oral administration of anionic macromolecules extracted from Codium fragile (CFAM) and red ginseng extract mixture on the peritoneal macrophage cells in immune-suppressed mice. Cyclophosphamide (CY) induces the immune-suppressed condition. CY-treated mice were orally fed with different concentrations of CFAM supplemented with red ginseng extract and the peritoneal macrophages collected. CY treatment significantly decreased the immune activities of peritoneal macrophages, compared to the normal mice. The administration of CFAM mixed with red ginseng extract significantly boosted the viability of macrophage cells and nitric oxide production of peritoneal macrophages. Further, the oral administration of CFAM mixed with red ginseng extract up-regulated the expression of iNOS, COX-2, and TLR-4 as well as cytokines such as IL-1β, IL-6, TNF-α, and IFN-γ more than the red ginseng-treated group. This study showed that CFAM enhanced the immune activity of red ginseng extract in the peritoneal macrophage cells of immune-suppressed mice. Furthermore, CFAM might be used as a co-stimulant of red ginseng extract through the regulation of macrophage cells for the enhancement of human health and immunity.

암백신 (Cancer Vaccines)

  • 손은화;인상환;표석능
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.55-67
    • /
    • 2005
  • Cancer vaccine is an active immunotherapy to stimulate the immune system to mount a response against the tumor specific antigen. Working as a stimulant to the body's own immune system, cancer vaccines help the body recognize and destroy targeted cancers and may help to shrink advanced tumors. Research is currently underway to develop therapeutic cancer vaccines. It is also possible to develop prophylactic vaccines in the future. The whole cell approach to eradicate cancer has used whole cancer cells to make vaccine. In an early stage of this approach, whole cell lysate or a mixture of immunoadjuvant and inactivated cancer cells has been used. Improved vaccines are being developed that utilize cytokines or costimulatory molecules to mount an attack against cancer cells. In case of melanoma, these vaccines are expected to have a therapeutic effect of vaccine. Furthermore, it is attempting to treat stomach cancer, colorectal cancer, pancreatic cancer, and prostate cancer. Other vaccines are being developing that are peptide vaccine, recombinant vaccine and dendritic cell vaccine. Out of them, reintroduction of antigen-specific dendritic cells into patient and DNA vaccine are mostly being conducted. Currently, research and development efforts are underway to develop therapeutic cancer vaccine such as DNA vaccine for the treatment of multiple forms of cancers.

XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway

  • Kim, Kwang-Soo;Park, Kyung-Soon
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권1호
    • /
    • pp.53-62
    • /
    • 2020
  • Natural killer (NK) cells are innate lymphocytes that play an essential role in preventing cancer development by performing immune surveillance to eradicate abnormal cells. Since ex vivo expanded NK cells have cytotoxic activity against various cancers, including breast cancers, their clinical potential as immune-oncogenic therapeutics has been widely investigated. Here, we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis or impaired cell cycle progression. We demonstrated that XRP44X enhanced interferon gamma expression in NK-92MI cells. We also elucidated that potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data provide insight into the evaluation of XRP44X as an immune stimulant and that XRP44X is a potential candidate compound for the therapeutic development of NK cells.

Genomic Organization and Isoform-Dependent Expression Patterns of Wap65 genes in Various Tissues during Immune Challenges in the Mud Loach Misgurnus mizolepis

  • Kim, Yi Kyung;Cho, Young Sun;Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제17권4호
    • /
    • pp.471-478
    • /
    • 2014
  • Genomic organization, including the structural characteristics of 5'-flanking regions of two 65-kDa protein (WAP65) isoform genes associated with warm temperature acclimation, were characterized and their transcriptional responses to immune challenges were examined in the intestine, kidney and spleen of the mud loach (Misgurnus mizolepis; Cypriniformes). Both mud loach Wap65 isoform genes displayed a 10-exon structure that is common to most teleostean Wap65 genes. The two mud loach Wap65 isoforms were predicted to possess various stress- and immune-related transcription factor binding sites in their regulatory regions; however, the predicted motif profiles differed between the two isoforms, and the inflammation-related transcription factor binding motifs, such as NF-${\kappa}B$ and CREBP sites, were more highlighted in the Wap65-2 isoform than the Wap65-1 isoform. The results of qRT-PCR indicated that experimental immune challenges using Edwardsiella tarda, lipopolysaccharide or polyI:C induced the Wap65-2 isoform more than Wap65-1 isoform, although modulation patterns in response to these challenges were tissue- and stimulant-dependent. This study confirms that functional diversification between the two mud loach Wap65 isoforms (i.e., closer involvement of Wap65-2 in the acute phase of inflammation and innate immunity) occurs at the mRNA level in multiple tissues, and suggests that such differential modulation patterns between the two isoforms are related to the different transcription factor binding profiles in their regulatory regions.