• 제목/요약/키워드: Immune system diseases

검색결과 338건 처리시간 0.023초

Erratum to: Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.718-727
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Severe combined immunodeficiency pig as an emerging animal model for human diseases and regenerative medicines

  • Iqbal, Muhammad Arsalan;Hong, Kwonho;Kim, Jin Hoi;Choi, Youngsok
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.625-634
    • /
    • 2019
  • Severe combined immunodeficiency (SCID) is a group of inherited disorders characterized by compromised T lymphocyte differentiation related to abnormal development of other lymphocytes [i.e., B and/or natural killer (NK) cells], leading to death early in life unless treated immediately with hematopoietic stem cell transplant. Functional NK cells may impact engraftment success of life-saving procedures such as bone marrow transplantation in human SCID patients. Therefore, in animal models, a T cell-/B cell-/NK cell+ environment provides a valuable tool for understanding the function of the innate immune system and for developing targeted NK therapies against human immune diseases. In this review, we focus on underlying mechanisms of human SCID, recent progress in the development of SCID animal models, and utilization of SCID pig model in biomedical sciences. Numerous physiologies in pig are comparable to those in human such as immune system, X-linked heritability, typical T-B+NK- cellular phenotype, and anatomy. Due to analogous features of pig to those of human, studies have found that immunodeficient pig is the most appropriate model for human SCID.

Myelin oligodendrocyte glycoprotein antibody-associated disorders: clinical spectrum, diagnostic evaluation, and treatment options

  • Lee, Yun-Jin;Nam, Sang Ook;Ko, Ara;Kong, JuHyun;Byun, Shin Yun
    • Clinical and Experimental Pediatrics
    • /
    • 제64권3호
    • /
    • pp.103-110
    • /
    • 2021
  • Inflammatory or immune-mediated demyelinating central nervous system (CNS) syndromes include a broad spectrum of clinical phenotype and different overlapping diseases. Antibodies against myelin oligodendrocyte glycoprotein (MOG-Ab) have been found in some cases of these demyelinating diseases, particularly in children. MOG-Ab is associated with a wider clinical phenotype not limited to neuromyelitis optica spectrum disorder, with most patients presenting with optic neuritis, acute disseminated encephalomyelitis (ADEM) or ADEM-like encephalitis with brain demyelinating lesions, and/or myelitis. Using specific cell-based assays, MOG-Ab is becoming a potential biomarker of inflammatory demyelinating disorders of the CNS. A humoral immune reaction against MOG was recently found in monophasic diseases and recurrent/multiphasic clinical progression, particularly in pediatric patients. This review summarizes the data regarding MOG-Ab as an impending biological marker for discriminating between these diverse demyelinating CNS diseases and discusses recent developments, clinical applications, and findings regarding the immunopathogenesis of MOG-Ab-associated disorders.

바이러스 감염에 대한 면역반응 (Immune Responses to Viral Infection)

  • 황응수;박정규;차창용
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

Immune Enhancement Effects of Codium fragile Anionic Macromolecules Combined with Red Ginseng Extract in Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1361-1368
    • /
    • 2019
  • Codium fragile is an edible seaweed in Asian countries that has been used as a thrombolytic, anticoagulant, antioxidant, anti-inflammatory, and immune-stimulatory agent. Ginseng has also been known to maintain immune homeostasis and to regulate the immune system via enhancing resistance to diseases and microorganisms. In this study, anionic macromolecules extracted from C. fragile (CFAM) were orally administered with red ginseng extract (100 mg/kg body weight) to cyclophosphamide-induced immunosuppressed male BALB/c mice to investigate the immune-enhancing cooperative effect of Codium fragile and red ginseng. Our results showed that supplementing CFAM with red ginseng extract significantly increased spleen index, T- and B-cell proliferation, NK cell activity, and splenic lymphocyte immune-associated gene expression compared to those with red ginseng alone, even though a high concentration of CFAM with red ginseng decreased immune biomarkers. These results suggest that CFAM can be used as a co-stimulant to enhance health and immunity in immunosuppressed conditions.

대사질환자의 모려 온열요법이 대사질환 관련 변인과 면역 및 호흡건강 관련 변인에 미치는 영향 (Effect of Oyster Shell Thermal Therapy on Metabolic Disease Risk Factors, Respiratory Health and Immune-Related Variables in Patients with Metabolic Diseases)

  • 신재숙;김충곤;박장준;배원식;최희정;김원경;손원준;김준혁;이화경;김현준
    • 대한통합의학회지
    • /
    • 제10권4호
    • /
    • pp.229-240
    • /
    • 2022
  • Purpose : In this study, using Oyster Shell Thermal Therapy for metabolic diseases, we analyzed the effect of immune and inflammation-related variables and respiratory health-related variables of test subjects to verify the effect of improving respiratory health. Methods : In this study, 26 patients with metabolic diseases were divided into an experimental group (N=13) and a control group (N=13). After Oyster Shell Thermal Therapy (four weeks/three times a week/1 hour per time), metabolic disease-related variables and immune and respiratory health-related variables were measured and compared between the two groups. The conclusion of this study is as follows: Results : After the four-week Oyster Shell Thermal Therapy, in terms of changes in the metabolic disease-related variables, the control group exhibited a higher increase in TC and LDL-C levels than the experimental group. In the case of glucose, the experimental group showed a decrease after the experiment (p<.05). After the four-week thermotherapy, a statistically significant interactive effect occurred in natural killer (NK) cells among the immune-related variables. According to the results of a post-experimental analysis, the control group showed a higher decrease in NK cells than the experimental group (p<.05). After the 4-weeks thermotherapy, the experimental group showed a greater increase in maximum oxygen intake of the respiratory health-related variables than the control group. Conclusion : Based on a comprehensive review of the study results, the subjects who underwent the four-week Oyster Shell Thermal Therapy exhibited positive physical changes in metabolic disease-related variables as well as immune and respiratory health-related variables, which demonstrates the effectiveness of Oyster Shell Thermal Therapy on immune and respiratory health. Accordingly, it is recommended to conduct long-term Oyster Shell Thermal Therapy with various models in terms of the size and shape.

인체의 면역시스템의 체계적인 연구: 개관 (A Systems Approach to Immunology: a Survey)

  • 이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.425-427
    • /
    • 1990
  • This paper provides an overview of system analysis of immunology. The theoretical research in this area is aimed at an understanding of the precise manner by which the immune system controls infectious diseases, cancer, and AIDS. This can help provide a systematic plan for immunological experimentation.

  • PDF

HLA and Disease Associations in Koreans

  • Ahn, Stephen;Choi, Hee-Back;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.324-335
    • /
    • 2011
  • The human leukocyte antigen (HLA), the major histocompatibility complex (MHC) in humans has been known to reside on chromosome 6 and encodes cell-surface antigen-presenting proteins and many other proteins related to immune system function. The HLA is highly polymorphic and the most genetically variable coding loci in humans. In addition to a critical role in transplantation medicine, HLA and disease associations have been widely studied across the populations worldwide and are found to be important in prediction of disease susceptibility, resistance and of evolutionary maintenance of genetic diversity. Because recently developed molecular based HLA typing has several advantages like improved specimen stability and increased resolution of HLA types, the association between HLA alleles and a given disease could be more accurately quantified. Here, in this review, we have collected HLA association data on some autoimmune diseases, infectious diseases, cancers, drug responsiveness and other diseases with unknown etiology in Koreans and attempt to summarize some remarkable HLA alleles related with specific diseases.

펄스자기장(PMF)을 이용한 대식세포와 T 세포의 염증활성도 변화추이에 대한 연구 (A Study on the Change in Inflammatory Activity of Macrophages and T Cells Using Pulsed Magnetic Field)

  • 김소진 ;이현숙
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.324-328
    • /
    • 2023
  • Excessive inflammation in the body causes immune cells to release cytokines that damage normal tissues and cells, leading to rheumatoid arthritis and sepsis. Pulsed magnetic field(PMF) stimulation has many applications in the treatment of neurological, muscular disorders and pain. Therefore, in this study, we aim to investigate the effect of PMF stimulation on the regulation of excessive inflammation in the overall immune system. Macrophages, a primary immune cell, and T cells, a secondary immune cell, were co-cultured in the insert wells under the same conditions, and then inflammation was artificially induced. The changes in inflammatory activity following PMF stimulation were measured by pH and IL-6 concentration. After inflammation induction, both cells became more acidic and increased IL-6 expression, but after PMF stimulation, we observed improved acidification of macrophages and T cells and decreased IL-6 expression. Our results showed that infected macrophages activated T cells and that the recovery of excessive inflammatory response regulation after PMF stimulation proceeded more rapidly in macrophages. Therefore, this study suggests that PMF has a positive anti-inflammatory effect on the overall immune system and thus has the potential to be used as a non-invasive therapy for the treatment of chronic inflammatory diseases.

Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection

  • Eun-Jin Park;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.40.1-40.20
    • /
    • 2021
  • Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.