• 제목/요약/키워드: Immune regulator

검색결과 92건 처리시간 0.024초

Modulation of Glial and Neuronal Migration by Lipocalin-2 in Zebrafish

  • Kim, Ho;Lee, Shin-Rye;Park, Hae-Chul;Lee, Won-Ha;Lee, Myung-Shik;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.342-347
    • /
    • 2011
  • Background: Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology. Methods: Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro. Results: Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS. Conclusion: Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

제브라피쉬 interferon regulatory factor 10의 주사에 따른 면역 유전자 발현과 VHSV에 대한 방어 효과 (Immune gene expression and protection effect against VHSV by injection of interferon regulatory factor 10 in zebrafish (Danio rerio))

  • 김혜지;김진영;박종빈;이지현;박정수;김형준;권세련
    • 한국어병학회지
    • /
    • 제34권1호
    • /
    • pp.23-29
    • /
    • 2021
  • Interferon regulatory factors (IRFs) are a family of transcription factors essential to the control of antiviral immune response, cell growth, differentiation and apoptosis. IRF10 of zebrafish (Danio rerio) was negative regulation of the interferonΦ1 and 3 response in vitro. In this study, we analyze the induction of in vivo immune response activation from the IRF10 gene of zebrafish and the protective effect against VHSV. As the results, the group inoculated with IRF10 expression vectors, there was no expression of IFNΦ1, suggestion that IRF10 may function as a negative regulator of IRF3, which binds to the IFNΦ1 promoter. And other types of interferon genes (IFNΦ2-4) are thought to have been activated, inducing to the expression of pro-inflammatory cytokine and Mx genes. As the results of challenge test performed at 14 days after inoculation of the expression vectors, the maximum survival rate [50% (1㎍ DNA) and 42.5% (10㎍ DNA)] for IRF10 group were recorded. Meanwhile, the survival rates of pcDNA3.1 and PBS as the control groups were 10% and 15%, respectively. This study suggests that the possibility that activation of IRF10 molecule could be exploited as a VHS control method.

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

Transmembrane Adaptor Proteins Positively Regulating the Activation of Lymphocytes

  • Park, In-Young;Yun, Yung-Dae
    • IMMUNE NETWORK
    • /
    • 제9권2호
    • /
    • pp.53-57
    • /
    • 2009
  • Engagement of the immunoreceptors initiates signaling cascades resulting in lymphocyte activation and differentiation to effector cells, which are essential for the elimination of pathogens from the body. For the transduction of these immunoreceptor-mediated signals, several linker proteins termed transmembrane adaptor proteins (TRAPs) were shown to be required. TRAPs serve as platforms for the assembly and membrane targeting of the specific signaling proteins. Among seven TRAPs identified so far, LAT and LIME were shown to act as a positive regulator in TCR-mediated signaling pathways. In this review, we will discuss the functions of LAT and LIME in modulating T cell development, activation and differentiation.

Pathogenesis of Minimal Change Nephrotic Syndrome: A Review of the Underlying Molecular Mechanisms

  • Yang, Eun Mi
    • Childhood Kidney Diseases
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Nephrotic syndrome (NS) is the most common glomerular disorder in childhood, and a vast majority of cases are idiopathic. The precise cause of this common childhood disease is not fully elucidated despite significant advancements in our understanding of podocyte biology. Idiopathic NS has been considered "a disorder of T-cell function" mediated by a circulating factor that alters podocyte function resulting in massive proteinuria since the last four decades. Several circulatory factors released from T-cells are considered to be involved in pathophysiology of NS; however, a single presumptive factor has not been defined yet. Extended evidence obtained by advances in the pathobiology of podocytes has implicated podocytes as critical regulator of glomerular protein filtration and podocytopathy. The candidate molecules as pathological mediators of steroid-dependent NS are CD80 (also known as B7-1), hemopexin, and angiopoietin-like 4. The "two-hit" hypothesis proposes that the expression of CD80 on podocytes and ineffective inhibition of podocyte CD80 due to regulatory T-cell dysfunction or impaired autoregulation by podocytes results in NS. Recent studies suggest that not only T cells but also other immune cells and podocytes are involved in the pathogenesis of MCNS.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induced THP-1 Cell Apoptosis through an Autocrine Mechanism of Cytokines and SOCS-1-Mediated Bcl2 Inhibition

  • Jeon, Boram;Kim, Hangeun;Chung, Dae Kyun
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.293-300
    • /
    • 2022
  • Lipoteichoic acid (LTA) regulates the immune system, including inflammatory responses, through TLR2-mediated signaling pathways. LTA isolated from Staphylococcus aureus (aLTA) has been shown to induce apoptosis, but the detailed mechanism has not been identified. We found that aLTA induced apoptosis through an autocrine mechanism in the human monocyte-like cell line, THP-1. We observed that the expression level of the anti-apoptosis protein, Bcl2, was suppressed in LTA-treated THP-1 cells. In addition, the cytokines, TNF-α and IFN-γ, which have been shown to induce apoptosis in some cell lines, were involved in THP-1 cell death via the modulation of Bcl2. The suppression of Bcl2 by aLTA was recovered when the negative regulator, SOCS-1, was knocked down. Taken together, these results showed that aLTA induced apoptosis in THP-1 cells through an autocrine mechanism of cytokines and SOCS-1-mediated Bcl2 inhibition.

Enhanced Anti-tumor Reactivity of Cytotoxic T Lymphocytes Expressing PD-1 Decoy

  • Jae Hun Shin;Hyung Bae Park;Kyungho Choi
    • IMMUNE NETWORK
    • /
    • 제16권2호
    • /
    • pp.134-139
    • /
    • 2016
  • Programmed death-1 (PD-1) is a strong negative regulator of T lymphocytes in tumor-microenvironment. By engaging PD-1 ligand (PD-L1) on tumor cells, PD-1 on T cell surface inhibits anti-tumor reactivity of tumor-infiltrating T cells. Systemic blockade of PD-1 function using blocking antibodies has shown significant therapeutic efficacy in clinical trials. However, approximately 10 to 15% of treated patients exhibited serious autoimmune responses due to the activation of self-reactive lymphocytes. To achieve selective activation of tumor-specific T cells, we generated T cells expressing a dominant-negative deletion mutant of PD-1 (PD-1 decoy) via retroviral transduction. PD-1 decoy increased IFN-γ secretion of antigen-specific T cells in response to tumor cells expressing the cognate antigen. Adoptive transfer of PD-1 decoy-expressing T cells into tumor-bearing mice potentiated T cell-mediated tumor regression. Thus, T cell-specific blockade of PD-1 could be a useful strategy for enhancing both efficacy and safety of anti-tumor T cell therapy.

Nucleopolyhedrovirus Induces Suppressor of Cytokine Signaling in the Beet Armyworm, Spodoptera exigua

  • Noh Mi-Young;Jo Yong-Hun;Kim Seon-Am;Lee Yong-Seok;Bang In-Seok;Kim Seon-Gon;Park Jong-Dae;Chun Jae-Sun;Seo Sook-Jae;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제12권2호
    • /
    • pp.63-67
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to playa key role as a negative feedback regulator in JAK/STAT signaling cascade in innate immunity. Our laboratory has recently been interested in elucidating the interactions between Spodoptera exigua (Se) and SeNPV. This context leads us to clone and characterize SeSOCS that may have important functions in response to SeNPV infection. Using the RT-PCR and TA cloning approach, we found a partial fragment (416 bp) of SeSOCS. Blast search and multiple alignment data showed that it has a homology to various insects such as Anopheles gambiae (78%), Aedes aegypti (75%), Drosophila melanogastar (77%), Mus musculus (69%), and Homo sapiens (69%). Temporal induction patterns of SeSOCS were analysed after being immune-challenged with either NPV or laminarin. It showed that the level of SeSOCS mRNA was strongly induced in a biphasic manner in response to SeNPV and laminarin, respectively. It seems that SOCS, a negative regulator of JAK/STAT signaling system is also present in S. exigua and may playa role in innate immunity albeit its precise role should be further elucidated at the molecular and cellular level in the early phase of SeNPV infection in larvae.

NDRG2 Promotes GATA-1 Expression through Regulation of the JAK2/STAT Pathway in PMA-stimulated U937 Cells

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Nam, So-Rim;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.348-357
    • /
    • 2011
  • Background: N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMAstimulated U937 cells. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. Results: NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. Conclusion: The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.

소세포폐암의 미세환경에서 후성학적 조절인자의 역할에 대한 최신 연구 동향 (Recent Findings on the Role of Epigenetic Regulators in the Small-cell Lung Cancer Microenvironment)

  • 정민호;김기범
    • 생명과학회지
    • /
    • 제34권7호
    • /
    • pp.520-530
    • /
    • 2024
  • 종양 억제 유전자(TSG)는 세포 항상성을 유지하는 데 중요한 역할을 한다. 이러한 유전자의 기능이 상실되면 세포 가소성(cellular plasticity)이 유발되어 다양한 암, 특히 공격적인 성향을 가진 소세포 폐암(SCLC)이 발생할 수 있다. SCLC는 주로 후성학적 조절인자를 암호화하는 유전자에서 발생하는 다수의 기능 상실 돌연변이에 의해 유발된다. 이러한 돌연변이는 직접적으로 표적화하기 어렵기 때문에 치료제 개발이 어려운 상황이다. 그러나 이러한 돌연변이로 인한 분자적 변화를 이해하면 종양 치료 전략을 개발하는데 큰 도움이 될 수 있다. 우리는 SCLC의 이질적인 유전체 환경에도 불구하고 환자의 종양에서 발생하는 돌연변이의 영향이 악성 종양을 유발하는 몇 가지 중요한 경로로 수렴되고 있음을 확인하였다. 특히, 후성학적 변화는 전사 조절 장애를 초래하여 돌연변이 세포가 면역 회피 및 높은 전이 능력을 가진 매우 가소성이 높은 상태로 진입하게 한다. 본 논문에서는 반대 기능을 가진 후성학적 조절인자의 불균형이 면역 인식 마커의 상실로 이어져 종양 세포가 면역 체계로부터 효과적으로 회피하는 과정을 보여주는 연구들을 강조하였다. 또한 후성학적 조절인자가 신경내분비 세포 특성을 유지하는 역할과 비정상적인 전사 조절이 종양의 발달 및 진행 중 상피간엽이행(EMT)를 촉진하는 방법에 대해 서술하였다. 이 경로들은 별개의 것처럼 보이지만, 흔히 공통된 분자와 매개체를 공유하고 있음을 확인하였다. 빈번하게 변화하는 후성학적 조절인자 간의 연결을 이해하면 SCLC 및 유사한 돌연변이를 가진 다른 암의 발달과 진행의 분자적 메커니즘에 대한 귀중한 통찰력을 제공하여 예방 및 치료법 개발에 기여할 수 있을 것이다.