• 제목/요약/키워드: Immune escape

검색결과 42건 처리시간 0.024초

T Cell Receptor Signaling That Regulates the Development of Intrathymic Natural Regulatory T Cells

  • Song, Ki-Duk;Hwang, Su-Jin;Yun, Cheol-Heui
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.336-341
    • /
    • 2011
  • T cell receptor (TCR) signaling plays a critical role in T cell development, survival and differentiation. In the thymus, quantitative and/or qualitative differences in TCR signaling determine the fate of developing thymocytes and lead to positive and negative selection. Recently, it has been suggested that self-reactive T cells, escape from negative selection, should be suppressed in the periphery by regulatory T cells (Tregs) expressing Foxp3 transcription factor. Foxp3 is a master factor that is critical for not only development and survival but also suppressive activity of Treg. However, signals that determine Treg fate are not completely understood. The availability of mutant mice which harbor mutations in TCR signaling mediators will certainly allow to delineate signaling events that control intrathymic (natural) Treg (nTreg) development. Thus, we summarize the recent progress on the role of TCR signaling cascade components in nTreg development from the studies with murine model.

Mucin in cancer: a stealth cloak for cancer cells

  • Wi, Dong-Han;Cha, Jong-Ho;Jung, Youn-Sang
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.344-355
    • /
    • 2021
  • Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.

Immunotherapy in Head and Neck Squamous Cell Cancer

  • Denaro, Nerina;Merlano, Marco Carlo
    • Clinical and Experimental Otorhinolaryngology
    • /
    • 제11권4호
    • /
    • pp.217-223
    • /
    • 2018
  • Prognosis in relapsed metastatic head and neck squamous cell cancer (RM-HNSCC) is dismal. Platinum based chemotherapy in combination with Cetuximab is used in first-line setting, while no further validated options are available at progression. Immunotherapy has produced durable clinical benefit in some patients with RM-HNSCC although the premises are several patients are nonresponders. Studies are ongoing to determine predictive factors and the ideal setting/combination of novel immunotherapies. In this paper, we discuss the past and present of immunotherapy in head and neck cancer and provide an up-to-date information regarding the potential ways to improve immunotherapy outcomes in HNSCC.

Crystallization and preliminary X-ray analysis of API5-FGF2 complex

  • Bong, Seoung Min;Lee, Byung Il
    • Biodesign
    • /
    • 제6권4호
    • /
    • pp.92-95
    • /
    • 2018
  • API5 is a unique oncogenic, non-BIR type IAP nuclear protein and is up-regulated in several cancers. It exerts several functions, such as apoptosis inhibition, cell cycle progression, cancer immune escape, and anticancer drug resistance. Although structural studies of API have revealed that API5 mediates protein-protein interactions, its detailed molecular functions remain unknown. Since FGF2 is one of API5's major interacting proteins, structural studies of the API5-FGF2 complex will provide insight into both proteins' molecular function. We overexpressed and purified API5 and FGF2 in Escherichia coli and crystallized the API-FGF2 complex using polyethylene glycol (PEG) 6000 as a precipitant. Diffraction data were collected to a $2.7{\AA}$ resolution using synchrotron X-rays. Preliminary diffraction analysis revealed that the API5-FGF2 complex crystal belongs to the space group $P2_12_12_1$ with the following unit cell parameters: a = 46.862, b = 76.523, $c=208.161{\AA}$. One asymmetric unit with 49.9% solvent contains one API5-FGF2 complex. Molecular replacement calculation, using API5 and FGF2 coordinates, provided a clear electron density map for an API5-FGF2 complex.

CAR T Cell Immunotherapy Beyond Haematological Malignancy

  • Cedric Hupperetz;Sangjoon Lah;Hyojin Kim;Chan Hyuk Kim
    • IMMUNE NETWORK
    • /
    • 제22권1호
    • /
    • pp.6.1-6.19
    • /
    • 2022
  • Chimeric antigen receptor (CAR) T cells, which express a synthetic receptor engineered to target specific antigens, have demonstrated remarkable potential to treat haematological malignancies. However, their transition beyond haematological malignancy has so far been unsatisfactory. Here, we discuss recent challenges and improvements for CAR T cell therapy against solid tumors: Antigen heterogeneity which provides an effective escape mechanism against conventional mono-antigen-specific CAR T cells; and the immunosuppressive tumor microenvironment which provides physical and molecular barriers that respectively prevent T cell infiltration and drive T cell dysfunction and hypoproliferation. Further, we discuss the application of CAR T cells in infectious disease and autoimmunity.

후두편평세포암종에서 Human papillomavirus의 검출과 주조직적합복합체(Major Histocompatibility Complex: MHC) Class I 발현양상 (Detection of Human Papillomavirus and Expression of MHC Class I in Laryngeal Squamous Cell Carcinoma)

  • 오병권;황찬승;홍영호;김훈;김춘길;민헌기
    • 대한기관식도과학회지
    • /
    • 제3권1호
    • /
    • pp.70-78
    • /
    • 1997
  • The development of preneoplastic and neoplastic squamous cell proliferations of body sites such as the skin, female lower genital tract, and larynx is strongly associated with specific types of human papillomaviruses (HPV). Antitumor $CD^{8+}$ cells recognize peptide antigens presented on the surface of tumor cells by major histocompatibility complex (MHC) class I molecules. The MHC class I molecule is a heterodimer composed of an integral membrane glycoprotein designated the alpha chain and a noncovalently associated, soluble protein called beta-2-microglobulin( $\beta$ -2-m). Loss of $\beta$-2-m generally eliminates antigen recognition by antitumor $CD^{8+}$ T cells. We evaluated the expression of $\beta$-2-m as a potential means of tumor escape from immune recognition and the presence of HPV DNA as a cause of laryngeal squamous cell carcinomas (SCCs). Laryngeal SCCs (n=39) were analyzed for MHC class I expression by immunohistochemistry and for presence of HPV by in situ hybridization technique. The results were as follows : 1) HPV DNA was detected in 10 (25.64%) out of 39 cases in laryngeal squamous cell carcinomas. 2) MHC class I down-regulation (heterogenous and negative expression) in HPV positive lesions was higher than HPV negative lesions. 3) The expression of MHC class I was related to cellular differentiation regardless of T-stage and nodal involvement. In conclusion, HPV was thought to be the etiological factor of SCC of larynx, and we found that the down-regulation of MHC class I was a common phenomenon In laryngeal SCC and may provide a way for tumor cells to escape from immune surveillance.

  • PDF

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

BmNPV Infection Enhances Ubiquitin-conjugating Enzyme E2 Expression in the Midgut of BmNPV Susceptible Silkworm Strain

  • Gao, Lu;Chen, Keping;Yao, Qin;Chen, Huiqing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2006
  • The ubiquitin conjugating enzyme 2 (E2) is core component of ubiquitin proteasome pathway (UPP) which represents a selective mechanism for intracellular proteolysis in eukaryotic cells. The E2 has been implicated in the intracellular transfer of ubiquitin to target protein. We show here the involvement of E2 in antiviral immune of Bombyx mori to Bombyx mori nuclear polyhedrosis virus (BmNPV). In this study, mRNA fluorescent differential display PCR (FDD-PCR) was performed with BmNPV highly resistant silkworm strain NB and susceptible silkworm strain 306. At 24 h post BmNPV infection, FDD-PCR with the arbitrary primer AP34 showed that one cDNA band was down-regulated in the midgut of resistant strain, but highly expressed in susceptible strain. The deduced amino acid sequence of this cDNA clone share 99% identity with the recently published B. mori ubiquitin conjugating enzyme E2 (Genbank NO: DQ311351). Fluorescent quantitative PCR corroborated down regulation of E2 in resistant strain. We there conclude that BmNPV infection evokes strong response of susceptible strain including activation of UPP. BmNPV may evolve escape mechanisms that manipulate the UPP in order to persist in the infected host. In addition, the identification of down-regulation of E2 in resistant strain, as well as structure data, are essential to understanding how UPP operates in silkworm antiviral immune to BmNPV disease.

태아모체간 계면에서의 면역학적 측면 (Immunologic Aspects at the Feto-Maternal Interface)

  • 정인배
    • 한국발생생물학회지:발생과생식
    • /
    • 제5권2호
    • /
    • pp.93-100
    • /
    • 2001
  • 태아가 모체의 면역 거부 반응으로부터 회피될 수 있는 기전에 관한 연구는 반세기를 지내왔지만 아직까지 규명되지 못하고 있다. 태아모체간 계면에서의 면역학적 기전이상은 자연 유산 및 습관성 유산, 태아발육제한, 임신성 고혈압 질환, 보조 생식술 후 착상실패, 태아 사망 등 각종 임신 합병증들의 병인으로 작용하므로 이 기전 규명은 매우 중요하다. 본 종설에서는 현재까지 이 면역학적 기전에 관해 밝혀진 내용들이 그 중요성의 정도순으로 기술되었다. 그 기전 이해에 관해서는 1) 융모외 세포영양모세포(extravillous cytotrophoblasts)가 표현하는 인백혈구 항원(HLA-C, E, G)과 자연살세포 수용체(NK cell receptor)들과 상호 관계가 그 핵심으로 2) 면역 조정(immunomodulation)과 3) 선천면역(innate immunity)이 주된 기전이고 4) 보체(complement) 등 인백혈구 항원계(HLA system)이외의 인자들이 관여함 등으로 요약될 수 있고 이러한 무수한 기전들의 종합적인 면역 조정 결과가 해당 임신의 예후를 결정하게 될 것이다. 향후, 각 기전에 대한 연구들, 특히 융모외 세포영양모세포(extravillous cytotrophoblasts)의 인백혈구 항원(HLA antigens)과 그 수용체(receptor)들의 조절기전, 사이토카인(cytokine), 보체(complement) 등의 역할에 관한 더욱 많은 연구가 진척되어야할 것이다.

  • PDF

Middle East Respiratory Syndrome Coronavirus-Encoded Accessory Proteins Impair MDA5-and TBK1-Mediated Activation of NF-κB

  • Lee, Jeong Yoon;Bae, Sojung;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권8호
    • /
    • pp.1316-1323
    • /
    • 2019
  • Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging coronavirus which is zoonotic from bats and camels. Its infection in humans can be fatal especially in patients with preexisting conditions due to smoking and chronic obstructive pulmonary disease (COPD). Among the 25 proteins encoded by MERS-CoV, 5 accessory proteins seem to be involved in viral evasion of the host immune responses. Here we report that ORF4a, ORF4b, and ORF8b proteins, alone or in combination, effectively antagonize nuclear factor kappa B ($NF-{\kappa}B$) activation. Interestingly, the inhibition of $NF-{\kappa}B$ by MERS-CoV accessory proteins was mostly at the level of pattern recognition receptors: melanoma differentiation-associated gene 5 (MDA5). ORF4a and ORF4b additively inhibit MDA5-mediated activation of $NF-{\kappa}B$ while that of retinoic acid-inducible gene 1 (RIG-I) is largely not perturbed. Of note, ORF8b was found to be a novel antagonist of MDA5-mediated $NF-{\kappa}B$ activation. In addition, ORF8b also strongly inhibits Tank-binding kinase 1 (TBK1)-mediated induction of $NF-{\kappa}B$ signaling. Taken together, MERS-CoV accessory proteins are involved in viral escape of $NF-{\kappa}B$-mediated antiviral immune responses.