• 제목/요약/키워드: Immune challenges

검색결과 64건 처리시간 0.026초

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment

  • Jialin Feng;Oliver J. Read;Albena T. Dinkova-Kostova
    • Molecules and Cells
    • /
    • 제46권3호
    • /
    • pp.142-152
    • /
    • 2023
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of proinflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.

Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts

  • Gitte S. Jensen;Dina Cruickshank;Debby E. Hamilton
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.715-723
    • /
    • 2023
  • Microbial biofilms are resilient, immune-evasive, often antibiotic-resistant health challenges, and increasingly the target for research into novel therapeutic strategies. We evaluated the effects of a nutraceutical enzyme and botanical blend (NEBB) on established biofilm. Five microbial strains with known implications in chronic human illnesses were tested: Candida albicans, Staphylococcus aureus, Staphylococcus simulans (coagulase-negative, penicillin-resistant), Borrelia burgdorferi, and Pseudomonas aeruginosa. The strains were allowed to form biofilm in vitro. Biofilm cultures were treated with NEBB containing enzymes targeted at lipids, proteins, and sugars, also containing the mucolytic compound N-acetyl cysteine, along with antimicrobial extracts from cranberry, berberine, rosemary, and peppermint. The post-treatment biofilm mass was evaluated by crystal-violet staining, and metabolic activity was measured using the MTT assay. Average biofilm mass and metabolic activity for NEBB-treated biofilms were compared to the average of untreated control cultures. Treatment of established biofilm with NEBB resulted in biofilm-disruption, involving significant reductions in biofilm mass and metabolic activity for Candida and both Staphylococcus species. For B. burgdorferi, we observed reduced biofilm mass, but the remaining residual biofilm showed a mild increase in metabolic activity, suggesting a shift from metabolically quiescent, treatment-resistant persister forms of B. burgdorferi to a more active form, potentially more recognizable by the host immune system. For P. aeruginosa, low doses of NEBB significantly reduced biofilm mass and metabolic activity while higher doses of NEBB increased biofilm mass and metabolic activity. The results suggest that targeted nutraceutical support may help disrupt biofilm communities, offering new facets for integrative combinational treatment strategies.

Sarcoma Immunotherapy: Confronting Present Hurdles and Unveiling Upcoming Opportunities

  • Sehan Jeong;Sharmin Afroz;Donghyun Kang;Jeonghwan Noh;Jooyeon Suh;June Hyuk Kim;Hye Jin You;Hyun Guy Kang;Yi-Jun Kim;Jin-Hong Kim
    • Molecules and Cells
    • /
    • 제46권10호
    • /
    • pp.579-588
    • /
    • 2023
  • Sarcomas are rare and heterogeneous mesenchymal neoplasms originating from the bone or soft tissues, which pose significant treatment challenges. The current standard treatment for sarcomas consists of surgical resection, often combined with chemo- and radiotherapy; however, local recurrence and metastasis remain significant concerns. Although immunotherapy has demonstrated promise in improving long-term survival rates for certain cancers, sarcomas are generally considered to be relatively less immunogenic than other tumors, presenting substantial challenges for effective immunotherapy. In this review, we examine the possible opportunities for sarcoma immunotherapy, noting cancer testis antigens expressed in sarcomas. We then cover the current status of immunotherapies in sarcomas, including progress in cancer vaccines, immune checkpoint inhibitors, and adoptive cellular therapy and their potential in combating these tumors. Furthermore, we discuss the limitations of immunotherapies in sarcomas, including a low tumor mutation burden and immunosuppressive tumor microenvironment, and explore potential strategies to tackle the immunosuppressive barriers in therapeutic interventions, shedding light on the development of effective and personalized treatments for sarcomas. Overall, this review provides a comprehensive overview of the current status and potential of immunotherapies in sarcoma treatment, highlighting the challenges and opportunities for developing effective therapies to improve the outcomes of patients with these rare malignancies.

The Role of Functional Feed Additives in Modulating Intestinal Health and Integrity

  • Kocher, Andreas
    • 한국가금학회지
    • /
    • 제39권1호
    • /
    • pp.33-37
    • /
    • 2012
  • One of the biggest challenges for the animal feed industry in the coming years will be to meet the growing demand in animal protein in light of increased cost of feed ingredient as well as tougher restrictions on the use of antimicrobial growth promoters imposed by consumers and governments. A key focus area will be to maximise feed efficiency and minimise nutrient waste. It has been widely acknowledged that the composition of the intestinal microflora is closely related to intestinal health and performance of animals. Advanced microbial techniques have shown a close relationship between bacterial communities and their ability to modulate nutrient absorption and processing. In addition it has been recognised that modulating the immune response has significant impact on overall health as well as overall nutrient demand. Molecular techniques are a useful tool to gain an understanding of the impact of dietary interventions including the use of functional feed additives on specific changes in microbial communities or the immune system. Most these techniques however focus on the evaluation of large changes in bacterial compositions and often underestimate or neglect to recognise small changes in microbial diversity or behaviour changes without any measurable immune response. The key to understanding the relationship between specific nutritional intervention and the impact on health and performance lies in a deeper understanding of the impact of these nutrients on the expression of specific genes or specific metabolic pathways. The development of molecular tools as a result of developments in the field of Nutrigenomics has enabled researchers to study the effects of specific nutrients on the whole genome or in other words, the effect of thousands of genes simultaneously, and has opened a completely different avenue for nutritional research.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Salmonella Gallinarum 세포외막단백질의 프로테옴 분석 및 닭에서의 방어능 효과 (Proteomic Analysis and Protective Effects of Outer Membrane Proteins from Salmonella Gallinarum in Chickens)

  • 선지선;조영재;장주현;강정무;한장혁;한태욱
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.281-286
    • /
    • 2013
  • Salmonella Gallinarum (SG) is known as an important pathogen that causes fowl typhoid in chickens. To investigate SG outer-membrane proteins (OMPs) as a vaccine candidate, we used proteomic mapping and database analysis techniques with extracted OMPs. Also, extracted OMPs were evaluated in several aspects to their safety, immune response in their host and protective effects. Our research has established a proteomic map and database of immunogenic SG-OMPs used as inactive vaccine against salmonellosis in chickens. A total of 22 spots were detected by 2-dimensional gel electrophoresis and immunogenic protein analysis. Eight spots were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprinting (PMF) and categorized into four different types of proteins. Among these proteins, OmpA is considered to be an immunogenic protein and involved in the hosts' immune system. To estimate the minimum safety dose in chickens, 35 brown layers were immunized with various concentrations of OMPs, respectively. Consequently, all chickens immunized with more than a $50{\mu}g$ dose were protected against challenges. Moreover, intramuscular administration of OMPs to chickens was more effective compared to subcutaneous administration. These results suggest that the adjuvanted SG-OMP vaccine not only induces both the humoral and cellular immune response in the host but also highly protects the hosts' exposed to virulent SG with $50{\mu}g$ OMPs extracted by our method.

Cartilage tissue engineering for craniofacial reconstruction

  • Kim, Min-Sook;Kim, Hyung-Kyu;Kim, Deok-Woo
    • Archives of Plastic Surgery
    • /
    • 제47권5호
    • /
    • pp.392-403
    • /
    • 2020
  • Severe cartilage defects and congenital anomalies affect millions of people and involve considerable medical expenses. Tissue engineering offers many advantages over conventional treatments, as therapy can be tailored to specific defects using abundant bioengineered resources. This article introduces the basic concepts of cartilage tissue engineering and reviews recent progress in the field, with a focus on craniofacial reconstruction and facial aesthetics. The basic concepts of tissue engineering consist of cells, scaffolds, and stimuli. Generally, the cartilage tissue engineering process includes the following steps: harvesting autologous chondrogenic cells, cell expansion, redifferentiation, in vitro incubation with a scaffold, and transfer to patients. Despite the promising prospects of cartilage tissue engineering, problems and challenges still exist due to certain limitations. The limited proliferation of chondrocytes and their tendency to dedifferentiate necessitate further developments in stem cell technology and chondrocyte molecular biology. Progress should be made in designing fully biocompatible scaffolds with a minimal immune response to regenerate tissue effectively

A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization

  • Mattoo, Sameer-ul-Salam;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권12호
    • /
    • pp.1601-1614
    • /
    • 2021
  • To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.

Strategies for Manipulating T Cells in Cancer Immunotherapy

  • Lee, Hyang-Mi
    • Biomolecules & Therapeutics
    • /
    • 제30권4호
    • /
    • pp.299-308
    • /
    • 2022
  • T cells are attractive targets for the development of immunotherapy to treat cancer due to their biological features, capacity of cytotoxicity, and antigen-specific binding of receptors. Novel strategies that can modulate T cell functions or receptor reactivity provide effective therapies, including checkpoint inhibitor, bispecific antibody, and adoptive transfer of T cells transduced with tumor antigen-specific receptors. T cell-based therapies have presented successful pre-clinical/clinical outcomes despite their common immune-related adverse effects. Ongoing studies will allow us to advance current T cell therapies and develop innovative personalized T cell therapies. This review summarizes immunotherapeutic approaches with a focus on T cells. Anti-cancer T cell therapies are also discussed regarding their biological perspectives, efficacy, toxicity, challenges, and opportunities.