• Title/Summary/Keyword: Imidazole

Search Result 219, Processing Time 0.026 seconds

Structure Analysis for Surface of LB Films Complexed Metal Ion (금속이온 착체에 의한 LB막의 표면 구조 분석)

  • Shin, Hoon-Kyu;Yoo, Seung-Yeop;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.881-883
    • /
    • 1998
  • We fabricated IMI-O polymer containing imidazole group that can be form a complex structure between the monolayer and the metal ions at the air-water interface. Also, the monolayer behavior at the air-water interface and Langmuir-Blodget films by complexes formation have been investigated by $\pi$-A isotherms, Brewster Angle Microscopy and the scanning Maxwell-stress microscopy.

  • PDF

Convenient Synthesis of N-Sulfinylamines Catalytic Effects of Tertiary Amines

  • Park, Koon-Ha;Park, Myeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.494-496
    • /
    • 1990
  • Catalytic effects of tertiary amines on N-sulfinylation of p-toluenesulfonamide, p-toluidine, and p-toluamide have been investigated by proton NMR studies. Though the catalytic effects were dependent on the substrates, 4-dimethylaminopyridine, pyridine and triethylamine exerted stronger catalytic effects than imidazole and N,N-dimethylaniline. Among the substrates employed, p-toluenesulfonamide turned out to be catalyzed greater than p-toluidine and p-toluamide.

Preparation, Characterization and Catalytic Performance of Ionic Liquid Immobilized onto Polystyrene-based Polymer for the Synthesis of Allyl Glycidyl Carbonate (폴리스티렌계 고분자에 고정화된 이온성 액체 촉매의 제조와 알릴글리시딜카보네이트 합성 반응 특성)

  • Lee, Mi-Kyung;Choi, Hye-Ji;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.621-626
    • /
    • 2010
  • In this study, imidazole-based ionic liquid on polystyrene was prepared and its catalytic performance in the cycloaddition of $CO_2$ with allyl glycidyl ether(AGE) to produce allyl glycidyl carbonate was investigated. The ionic liquid was generated on the polystyrene-based polymer through the immobilization of imidazole. The prepared catalyst was characterized using a number of instrumental analysis including EA, FT-IR, TGA and SEM. The immobilized ionic liquid showed very good catalytic activity for the cycloaddition of $CO_2$ with AGE, having 80% of AGE conversion with over 96% of the carbonate selectivity at $120^{\circ}C$ under 1.48 MPa $CO_2$ pressure. The immobilized ionic liquid can be used for the reaction up to four consecutive runs without significant loss of its catalytic activity.

Studies on the Catalytic Effects of Organic Compounds by Polymer-bonded Metalloporphyrins (고분자 결합 Metalloporphyrin을 이용한 유기물질의 산화촉매에 대한 연구)

  • Lee Sung-Ju;Paeng Ki-Jung;Whang Kyu-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.744-752
    • /
    • 1992
  • Polymer bonded metalloporphyrins are synthesized by reaction between Fe(III) protoporphyrin or Mn(II) tetrakis(4-N-carboxyphenyl)porphyrin with polystyrene divinylbenzene copolymer. The spectroscopic properties of synthetic polymer bonded metalloporphyrins are investigated by using resonance Raman spectrometer. By synthetic polymer bonded metalloporphyrins as catalyst, which are model of cytochrome P-450 and peroxidases, epoxidation of olefins and oxidation of alkanes are achieved with H2O2 as oxidant. The catalytic efficiencies with polymer bonded metalloporphyrins are improved on that with corresponding nonpolymer bonded metalloporphyrins. Especially those can be reused because of stability against oxidant. Electron donating imidazole derivatives, which are attached in 5th position of central metal of metalloporphyrins, enhance the catalytic efficiencies.

  • PDF

Preparation of Proton Conducting Anhydrous Membranes Using Poly(vinyl chloride) Comb-like Copolymer (Poly(vinyl chloride) 빗살형 공중합체를 이용한 무가습 수소이온 전도성 전해질막의 제조)

  • Kim, Jong-Hak;Koh, Joo-Hwan;Seo, Jin-Ah;Ahn, Sung-Hoon;Zeng, Xiaolei
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinyl chloride) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. PVC-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP). This comb-like copolymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA in the graft copolymer and the -COOH groups of IDA. Upon doping with phosphoric acid (PA, $H_3PO_4$) to form imidazole-PA complexes, the proton conductivity of the membranes continuously increased with increasing PA content. A maximum proton conductivity of 0.011 S/cm was achieved at $100^{\circ}C$ under anhydrous conditions. The PVC-g-PHEA/IDA/PA complex membranes exhibited good mechanical properties, i.e. 575 MPa of Young's modulus, as determined by a universal testing machine (UTM). Thermal gravimetric analysis (TGA) shows that the membranes were thermally stable up to $200^{\circ}C$.

Extracion and Photoluminescence Properties of Marine Microalgae for Organic Light Emitting Diode Applications (유기발광소자를 위한 해양 미세조류 유래 물질 및 광 발광 탐색)

  • Jung, Sang-Mok;Lee, Han-Seong;Kang, Seul-Gi;Lee, Han-Joo;Son, Ji-Su;Jeon, Jae-Hyuk;Chae, Hee-Baik;Shin, Hyun-Woung
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.564-569
    • /
    • 2015
  • In order to discover materials that can be used for OLED, extractions of marine microalgae was screened for photoluminescence(PL) properties and analyzed using gas chromatography-mass spectrometry(GC-MS). The extractions of Nitzschia denticula, Navicula cancellata and Nannochloropsis salina showed PL spectroscopy among fourteen marine microalgae species. The selected three fractions from three microalgae were analyzed by GC-MS. According to the results, it was found that the identified organic light-emitting materials can be subdivided into three functional groups based on imidazole, purine and quinoline. These chemicals are considered to have a strong relationship with PL spectroscopy for OLED materials.

The Structure of Econazole Nitrate (에코나졸 나이트레이트의 구조)

  • Seo, Il-Hwan;Jo, Seong-Il;Park, Gwon-Il
    • Korean Journal of Crystallography
    • /
    • v.1 no.1
    • /
    • pp.14-18
    • /
    • 1990
  • Econazole nitrate, 1-{2-[(4-chlorophenyl)methoxy]-2-(2,4-dichlorophenyl) ethy1}-1H-imidazole mono-nitrate.C18 H16 CI13 N3 O4 Mw=444.7 Monoclinic P/2₁c,a=17.337(4)A, b=15.191(5), c=7.601(3)A, β=91.72(2)', V=2000.9A3, Z=4, Dc=1.49g/cm3, Dm=1.45g/cm3(mo-ka)= 0.7107A, μ=4.31cm-1, F(000)=912.0, T=298'K, final R=0.061 for 1330 unique observed reflection. Each of the three ring system for the stars with B,A and C ring in order whilst A and C ring of econazole lie close to the same plane which is nearly 60˚with B ring. The hydrogen binding nitrogen of C ring and oxygen of nitrate contributes to stailization of econazole nitrate. Intr and intermolecular distances and angles are within the values recorded for simiar compounds.

  • PDF

The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS

  • Jang, Nak-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1790-1800
    • /
    • 2002
  • The DNA nucleosides(dA, dC, dG, dT)bound to gold nanoparticles (~13 nm) in aqueous solution has been studied as a probe by the SERS and their coordination structures have been proposed on the basis of them. According to UV-Visible absorption of gold nanoparticles after modifying with DNA nucleosides, the rates of absorption of dA, dC, and dG were much faster than that of dT as monitored by the aggregation kinetics at 700 nm. These data indicated that the nucleosides dA, dC, and dG had a higher affinity for the gold nanoparticles surface than nucleoside dT. As the result of SERS spectra, the binding modes of each of the nucleosides on gold nanoparticles have been assigned. A dA binds to gold nanoparticles via a N(7) nitrogen atom of the imidazole ring, which the C(6)-$NH_2$ group also participates in the coordination process. In the case of dC, it binds to the gold surface via a N(3) nitrogen atom of the pyrimidine ring with a partial contribution from the oxygen of C(2)=O group. A coordination of dG to the gold surfaces is also proposed. Although the dG has the two different nitrogens of a pyrimidine ring and the amino group, the N(1) nitrogen atom of a pyrimidine ring has a higher affinity after the hydrogen migrates to the amino group. Conversely, dT binds via the oxygen of the C(4)=O group of the pyrimidine ring. Accordingly, these data suggest that the nitrogen atom of the imidazole or the pyrimidine ring in the DNA nucleosides will bind more fast to the gold nanoparticles surfaces than the oxygen atom of the carbonyl group.

pH-Temperature Dependence of the Ca-ATPase Activity in Actomyosin Systems of Rabbit and Frog Skeletal muscle (Actomyosin $Ca^{++}$ Activated Adenosinetriphosphatase 활성도에 대한 pH 및 온도의 영향)

  • Kim, Hee-Joong;Hwang, Ae-Ran;Park, Yang-Saeng;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 1977
  • The activity of the $Ca^{++}$ activated adenosinetriphosphatase (Ca-ATPase) of actomyosin systeme of rabbit and frog skeletal muscle has been studied at varying pH and temperature. The PH optima of the Ca-ATPase activity of the rabbit actomyosin was rather broad. Over the temperature range of $16-36^{\circ}C$ activity of the enzyme was not appreciably changed between pH 6.4-8.5; below and above which it rapidly reduced. The pH at the inflection point of the enzyme activity increased as temperature decreased, showing the ${\bigtriangleup}pH\;inflection/{\bigtriangleup}T$ of approximately $-0.018\;unit/^{\circ}C$. Consequently, $(OH^-)/(H^+)$ ratio at the inflection point was constant regardless of assay temperature. In the frog actomyosin systems the Ca-ATPase activity was not apparently altered between PH 6.4-7.0 when the incubation temperature was $15{\sim}30^{\circ}C$. Outside of this range of pH, however, the enzyme activity was dramatically decreased. The pH of the inflection point changed inversely with temperature. ${\bigtriangleup}pH\;inflection/{\bigtriangleup}T$ at the acidic side was approximately $-0.018\;unit/^{\circ}C$, whereas that at the alkaline side it was about $-0.037\;unit/^{\circ}C$. The Arrhenius Plot on the Ca-ATPase activity at constant $(OH^-)/(H^+)$ ratio of 1.0 was not linear, but showed break at arround $20^{\circ}C$ for both rabbit and frog actomyosin Preparations. From these results it was speculated that pH dependence of Ca-ATPase activity of rabbit actomyosin systems might reflect titrations of histidine-imidazole and -SH groups, and that of the frog actomyosin represents titrations of histidine-imidazole and lysyllysine ${\alpha}-NH_2$ groups.

  • PDF