• Title/Summary/Keyword: Imha-Dam Reservoir

Search Result 21, Processing Time 0.031 seconds

The Study of Reservoir Operation for Drought Period (가뭄기간의 저수지 운영방안에 관한 연구)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1041-1048
    • /
    • 2004
  • In this study the results of optimal water supply analysis by operating constraints of reservoirs during drought period are as follows. During drought period, water supply reliability is possible about $97\~61{\%}$ by CASE 1-CASE 5. Water supply reliability is possible about $97.3{\%}$ in case of the Andong dam and $87.7{\%}$ in case of the Imha dam by CASE 3. Also, under the constraints of CASE 4, water supply reliability is possible about $87.5{\%}$ in case of the Andong dam and $73.3{\%}$ in case of the Imha dam. The reason what low of available water supply ratio is decreased inflow of Imha dam. When compare standard deviation of average storage with standard deviation of storage, stable storage can be secured during successive drought period. And it also can minimize shortage of water during drought. therefore, it is impossible that reservoir supply sufficient water but change of operating condition is better than pervious on that followed by full reservoir level. It is need that the study for optimal water supply during drought period has to be continued.

Parallel reservoirs system operation using NYC-Space Allocation-Rule (NYC-Space Allocation Rule을 이용한 병렬저수지 연계운영)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.533-542
    • /
    • 2005
  • In this study, an optimization technique was developed from the application of Allocation Rule. Average Allocation coefficients of the Andong and Imha dam compare constant water supply condition with vary water supply condition that are above the contribute ratio $67\%\~50\%$ the Andong dam in Rule(A)-Rule(C). In the Refill Season, Andong dam water supply contribution is higher than Imha dam at the Control point water supply. In the Allocation analysis results, Rule(A) is calculated storage ratio because Andong dam contribute to Control point larger than Imha dam which Andong dam storage is larger than Imha dam storage. Rule(B) calculated sum of the storage and inflow ratio for Andong dam and Imha dam, as Andong dam contribution is higher than Imha dam. Rule(C) calculated that sum of storage, inflow and water supply is divided average storage ratio, as the best results of the Allocation coefficients and water supply capacity. The results of storage analysis is larger vary water supply condition than constant water supply condition and the results of water supply analysis is larger vary water supply condition than constant water supply condition. Water supply deficit is decrease $30\%$ for vary water supply condition.

Review on the Fish Fauna of the Imha-Dam Reservoir in the Nakdonggang River System, Korea (낙동강 수계 임하호의 어류상 고찰)

  • Jeong, Choong-Hoon;Han, Kyung-Nam
    • Korean Journal of Ichthyology
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • Diversity of fish fauna and species list collected from the Imha-Dam Reservoir of the Nakdonggang River system were reviewed based on the published materials from 1992 to 2016. As a result of the present study, 46 freshwater fish species/subspecies belonging to 36 genera, 11 families, 4 orders were reported in the Imha-Dam Reservoir. Of them, Cyprinidae occupied 58.7% (27 species), Cobitidae 10.9% (5 spp.), Gobiidae 6.5% (3 spp.), and Siluridae, Centropomidae, Centrarchidae were 4.3% (2 spp.) in the number of species, respectively. The dominant species in the number of individuals was Erythroculter erythropterus (40.1%, 9,333 inds.), and the subdominant species was Opsariichthys uncirostris amurensis (9.8%, 2,281 inds.). Among 46 species/subspecies, 17 species (37.0%) were identified as endemic species to Korea. Three species were endangered fish species by the Ministry of Environment of Korea, five translocated species, and three exotic species were reported.

A Study of Parallel Reservoir Integrated Operation considering Storage (저류량을 고려한 병렬저수지 연계운영)

  • Park, Ki-Bum;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1176-1181
    • /
    • 2006
  • The purpose of this study was to estimate water supply analysis and reliability indicators by using allocation rule(AR) about Andong Dam and Imha Dam which have parallel reservoirs system. According to the analysis results of allocation rule, for Rule(A) and Rule(B), the contribution of water supply in Andong Dam was 60% more than in Imha Dam, and for Rule(C), the contributions in Andong Dam and Imha Dam were almost equal. In Rule(C), supply is allocated by the ratio which divides the sum of storage and inflow by the mean storage according to the storage state and supply capability state of Andong Dam and Imha Dam. This Rule(C) showed good results in the water supply capability analysis and reliability analysis of parallel reservoirs. In the analysis criteria of water supply in parallel reservoirs system, monthly water change quantity showed better results than monthly constant water quantity in water supply analysis. On the basis of this study, the new technique for water supply analysis was developed to be applied to parallel reservoirs, and this operation rule will establish the efficient operation measures in the application to several kinds of parallel reservoirs system.

  • PDF

Comparative Evaluation of Muddy Water Occurrence Possibility in Dam Reservoir Using GIS (GIS를 이용한 댐 저수지의 흙탕물 발생 가능성 비교 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Park, Jin-Hyeog
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.94-106
    • /
    • 2011
  • The muddy water occurrence possibility of reservoir were analyzed by considering GIS based soil erosion model, sediment delivery ratio and effective reservoir capacity. For the purpose, the weakness factors for the establishment of countermeasures of basin were analyzed by evaluating input factors of RUSLE model based on spatial data such as DEM, soil map, landcover map and so on. The potential of soil erosion was estimated considering highland upland. The sediment yields of Chungju-Dam and Soyanggang-Dam showed the highest result in sediment yield using sediment delivery ratio with considering basin area. The sediment concentration of Imha-Dam and Chungju-Dam showed the highest value as 0.791 $kg/m^3/yr$ and 0.526 $kg/m^3/yr$ respectively in sediment concentration with considering effective reservoir capacity. Especially, sediment yield of Imha-Dam was about 2.36 times lower than Soyanggang-Dam, but the sediment concentration was 1.90 times higher preferably, because the effective reservoir capacity of Imha-Dam was about 4.48 times lower. This study calculated sediment concentration using the 10 years mean rainfall event and could consider the aspects of soil, terrain, landcover, cultivation condition and effective reservoir capacity of each basin effectively through the results. Therefore, these quantitative sediment concentration data could be used to estimate the potential of high density turbid water for reservoir and applied with effective tools for the management of reservoir.

Analysis of Parallel Reservoir Water Supply Capacity According to Water Supply Changes (용수공급 변화에 따른 병렬저수지 용수공급 능력 해석)

  • Jea Min Park;Ki bum Park
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.675-684
    • /
    • 2023
  • In this study, the water supply reliability of the andong and Imha dam was analyzed using inflow data for 360 months from 1993 to 2022 through allocation model. First, in the analysis results of additional water supply to Deagu city, the water supply reliability of Rule (B) was the highest at 86% for andong dam, 84% for imha dam, and 80% for the control point. However, when the planned supply was supplied, the analysis results showed 94%, 93%, and 90%. Next, in the quantitative reliability analysis results, when considering additional water supply to Deagu city, Rule (A), Rule (B), and Rule (C) were analyzed as 88%, 88%, and 88%, respectively, based on the control point. When supplying the planned water supply, the quantitative reliability analysis results were 95% equally based on Rule (A), Rule (B), and Rule (C). Because of evaluating the two reliability methods, the number of shortages increases significantly when additional water is supplied to Daegu City, but the shortage is generally 5-7%, resulting in a relatively small shortage compared with the increase in the number of shortages. In the case of resilience and vulnerability, additional water supply to Daegu City takes more than two months to restore than the existing planned water supply, and the average shortage was calculated to be smaller than that of supplying the planned water. According to the results of the analysis, Andong dam has an average water storage of 130x106 m2 and Imha dam has 50x106 m2. In this deficient water supply can be compensated by water from the Nakdong river.

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.

The optimal operation of reservoir systems during flood season (홍수기 저수지의 최적연계운영)

  • Han, Kun-Yeun;Choi, Hyun-Gu;Kim, Dong-Il;Lee, Kyeong-Teak
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.743-746
    • /
    • 2008
  • Recently, due to the effect of global warming and extreme rainfall, the magnitude of flood disaster and the frequency of flood is rapidly increasing. In order to mitigate the damage of human and property from this kind of meteorological phenomenon and manage water resources scientifically, effective operation of dam and reservoir is very important. In case of Andong dam which was not performed a flood control function needs to develop new types of dam safety management measure because of recent extraordinary flood by typhoons. In case of Andong dam and Imha dam, I am using HEC-5 model in order to apply reservoir simulation. In this case, complex conditions among 100-year floods , 200-year floods and PMF was used. Also, I modified the maximum outflow 3,800m3/s into 3,490m3/s and applied this modified discharge in order to secure freeboard in the downstream. In an analysis that I applied modified outflow by 100-year floods and 200-year floods to, the result showed that river didn't overflow in Andong area but some other places have relatively low freeboard. In the cases that I modified maximum outflow, results showed that freeboard of levee is larger than existed simulation. In the simulation that I applied 200-year floods and PMF to and under a condition connected with PMF, results showed overflowing the levees. Because of the difference between the frequency of dam outflow and the design flood in river, it is required to improve the existed flood plan in the downstream of Andong dam. As a result of this study, the optimal operation of reservoir systems can be proposed to mitigate the flood damage in the downstream of Andong dam and also can be used to establish the flood plans.

  • PDF

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Development of Turbid Water Prediction Model for the Imha Dam Watershed using HSPF (HSPF를 활용한 임하댐 유역의 탁수 예측모델 구축)

  • Yi, Hye-Suk;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.760-767
    • /
    • 2008
  • A watershed model was constructed using HSPF(Hydrological Simulation Program - Fortran) for predicting flow and suspended solid in the Imha dam watershed. The whole watershed was divided into 33 sub-watersheds in the watershed model, which was calibrated for flow using measured data from 2001 to 2007. The accuracy of watershed model prediction was evaluated using statistical coefficients of R$_{eff}$(Nash-Sutcliffe), R$^2$(Correlation coefficient) and graphical comparison. Then, the model was calibrated for suspended solid using field data measured during 3 major rainfall events in July 2006, and then validated against data obtained in 2 rainfall events from July to August in 2007. Overall, the model showed good agreements with the field measurements for flow and suspended solid. The watershed model constructed in this study can provide flow and suspended solid entering the Imha reservoir and will be utilized for turbid water management in linkage with reservoir water quality models.