• Title/Summary/Keyword: Imbalanced Data

Search Result 162, Processing Time 0.018 seconds

Support Vector Machine Algorithm for Imbalanced Data Learning (불균형 데이터 학습을 위한 지지벡터기계 알고리즘)

  • Kim, Kwang-Seong;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.7
    • /
    • pp.11-17
    • /
    • 2010
  • This paper proposes an improved SMO solving a quadratic optmization problem for class imbalanced learning. The SMO algorithm is aproporiate for solving the optimization problem of a support vector machine that assigns the different regularization values to the two classes, and the prosoposed SMO learning algorithm iterates the learning steps to find the current optimal solutions of only two Lagrange variables selected per class. The proposed algorithm is tested with the UCI benchmarking problems and compared to the experimental results of the SMO algorithm with the g-mean measure that considers class imbalanced distribution for gerneralization performance. In comparison to the SMO algorithm, the proposed algorithm is effective to improve the prediction rate of the minority class data and could shorthen the training time.

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

Properties of chi-square statistic and information gain for feature selection of imbalanced text data (불균형 텍스트 데이터의 변수 선택에 있어서의 카이제곱통계량과 정보이득의 특징)

  • Mun, Hye In;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • Since a large text corpus contains hundred-thousand unique words, text data is one of the typical large-dimensional data. Therefore, various feature selection methods have been proposed for dimension reduction. Feature selection methods can improve the prediction accuracy. In addition, with reduced data size, computational efficiency also can be achieved. The chi-square statistic and the information gain are two of the most popular measures for identifying interesting terms from text data. In this paper, we investigate the theoretical properties of the chi-square statistic and the information gain. We show that the two filtering metrics share theoretical properties such as non-negativity and convexity. However, they are different from each other in the sense that the information gain is prone to select more negative features than the chi-square statistic in imbalanced text data.

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.

Naive Bayes Classifier based Anomalous Propagation Echo Identification using Class Imbalanced Data (클래스 불균형 데이터를 이용한 나이브 베이즈 분류기 기반의 이상전파에코 식별방법)

  • Lee, Hansoo;Kim, Sungshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1063-1068
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar due to its observation principle and disturb weather forecasting process. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo with data mining techniques. This paper conducts researches about implementation of classification method which can separate the anomalous propagation echo in the raw radar data using naive Bayes classifier with various kinds of observation results. Considering that collected data has a class imbalanced problem, this paper includes SMOTE method. It is confirmed that the fine classification results are derived by the suggested classifier with balanced dataset using actual appearance cases of the echo.

Improving minority prediction performance of support vector machine for imbalanced text data via feature selection and SMOTE (단어선택과 SMOTE 알고리즘을 이용한 불균형 텍스트 데이터의 소수 범주 예측성능 향상 기법)

  • Jongchan Kim;Seong Jun Chang;Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.395-410
    • /
    • 2024
  • Text data is usually made up of a wide variety of unique words. Even in standard text data, it is common to find tens of thousands of different words. In text data analysis, usually, each unique word is treated as a variable. Thus, text data can be regarded as a dataset with a large number of variables. On the other hand, in text data classification, we often encounter class label imbalance problems. In the cases of substantial imbalances, the performance of conventional classification models can be severely degraded. To improve the classification performance of support vector machines (SVM) for imbalanced data, algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) can be used. The SMOTE algorithm synthetically generates new observations for the minority class based on the k-Nearest Neighbors (kNN) algorithm. However, in datasets with a large number of variables, such as text data, errors may accumulate. This can potentially impact the performance of the kNN algorithm. In this study, we propose a method for enhancing prediction performance for the minority class of imbalanced text data. Our approach involves employing variable selection to generate new synthetic observations in a reduced space, thereby improving the overall classification performance of SVM.

Development of empirical formula for imbalanced transverse dispersion coefficient data set using SMOTE (SMOTE를 이용한 편중된 횡 분산계수 데이터에 대한 추정식 개발)

  • Lee, Sunmi;Yoon, Taewon;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1305-1316
    • /
    • 2021
  • In this study, a new empirical formula for 2D transverse dispersion coefficient was developed using the results of previous tracer test studies, and the performance of the formula was evaluated. Since many tracer test studies have been conducted under the conditions where the width-to-depth ratio is less than 50, the existing empirical formulas developed using these imbalanced tracer test results have limitations in applying to rivers with a width-to-depth ratio greater than 50. Therefore, in order to develop an empirical formula for transverse dispersion coefficient using the imbalanced tracer test data, the Synthetic Minority Oversampling TEchnique (SMOTE) was used to oversample new data representing the properties of the existing tracer test data. The hydraulic data and the transverse dispersion coefficients in conditions of width-to-depth ratio greater than 50 were oversampled using the SMOTE. The reliability of the oversampled data was evaluated using the ROC (Receiver Operating Characteristic) curve. The empirical formula of transverse dispersion coefficient was developed including the oversampled data, and the performance of the results were compared with the empirical formulas suggested in previous studies using R2. From the comparison results, the value of R2 was 0.81 for the range of W/H < 50 and 0.92 for 50 < W/H, which were improved accuracy compared to the previous studies.

A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data (불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구)

  • Jong-Woo Choi;Young-Jun Lee;Chae-Gyun Lim;Ho-Jin Choi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.295-302
    • /
    • 2023
  • Software requirements written in natural language may have different meanings from the stakeholders' viewpoint. When designing an architecture based on quality attributes, it is necessary to accurately classify quality attribute requirements because the efficient design is possible only when appropriate architectural tactics for each quality attribute are selected. As a result, although many natural language processing models have been studied for the classification of requirements, which is a high-cost task, few topics improve classification performance with the imbalanced quality attribute datasets. In this study, we first show that the classification model can automatically classify the Korean requirement dataset through experiments. Based on these results, we explain that data augmentation through EDA(Easy Data Augmentation) techniques and undersampling strategies can improve the imbalance of quality attribute datasets, and show that they are effective in classifying requirements. The results improved by 5.24%p on F1-score, indicating that handling imbalanced data helps classify Korean requirements of classification models. Furthermore, detailed experiments of EDA illustrate operations that help improve classification performance.

Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation (불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선)

  • Kibeom Kwon;Byeonghyun Hwang;Hyeontae Park;Ju-Young Oh;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2024
  • Anomaly detection for the penetration rate of tunnel boring machines (TBMs) is crucial for effective risk management in TBM tunnel projects. However, previous machine learning models for predicting the penetration rate have struggled with imbalanced data between normal and abnormal penetration rates. This study aims to enhance the performance of machine learning-based anomaly detection for the penetration rate by utilizing a data augmentation technique to address this data imbalance. Initially, six input features were selected through correlation analysis. The lowest and highest 10% of the penetration rates were designated as abnormal classes, while the remaining penetration rates were categorized as a normal class. Two prediction models were developed, each trained on an original training set and an oversampled training set constructed using SMOTE (synthetic minority oversampling technique): an XGB (extreme gradient boosting) model and an XGB-SMOTE model. The prediction results showed that the XGB model performed poorly for the abnormal classes, despite performing well for the normal class. In contrast, the XGB-SMOTE model consistently exhibited superior performance across all classes. These findings can be attributed to the data augmentation for the abnormal penetration rates using SMOTE, which enhances the model's ability to learn patterns between geological and operational factors that contribute to abnormal penetration rates. Consequently, this study demonstrates the effectiveness of employing data augmentation to manage imbalanced data in anomaly detection for TBM penetration rates.

Hierarchically penalized support vector machine for the classication of imbalanced data with grouped variables (그룹변수를 포함하는 불균형 자료의 분류분석을 위한 서포트 벡터 머신)

  • Kim, Eunkyung;Jhun, Myoungshic;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.961-975
    • /
    • 2016
  • The hierarchically penalized support vector machine (H-SVM) has been developed to perform simultaneous classification and input variable selection when input variables are naturally grouped or generated by factors. However, the H-SVM may suffer from estimation inefficiency because it applies the same amount of shrinkage to each variable without assessing its relative importance. In addition, when analyzing imbalanced data with uneven class sizes, the classification accuracy of the H-SVM may drop significantly in predicting minority class because its classifiers are undesirably biased toward the majority class. To remedy such problems, we propose the weighted adaptive H-SVM (WAH-SVM) method, which uses a adaptive tuning parameters to improve the performance of variable selection and the weights to differentiate the misclassification of data points between classes. Numerical results are presented to demonstrate the competitive performance of the proposed WAH-SVM over existing SVM methods.