• 제목/요약/키워드: Imaging techniques

검색결과 1,055건 처리시간 0.024초

High-speed Three-dimensional Surface Profile Measurement with the HiLo Optical Imaging Technique

  • Kang, Sewon;Ryu, Inkeon;Kim, Daekeun;Kauh, Sang Ken
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.568-575
    • /
    • 2018
  • Various techniques to measure the three-dimensional (3D) surface profile of a 3D micro- or nanostructure have been proposed. However, it is difficult to apply such techniques directly to industrial uses because most of them are relatively slow, unreliable, and expensive. The HiLo optical imaging technique, which was recently introduced in the field of fluorescence imaging, is a promising wide-field imaging technique capable of high-speed imaging with a simple optical configuration. It has not been used in measuring a 3D surface profile although confocal microscopy originally developed for fluorescence imaging has been adapted to the field of 3D optical measurement for a long time. In this paper, to the best of our knowledge, the HiLo optical imaging technique for measuring a 3D surface profile is proposed for the first time. Its optical configuration and algorithm for a precisely detecting surface position are designed, optimized, and implemented. Optical performance for several 3D microscale structures is evaluated, and it is confirmed that the capability of measuring a 3D surface profile with HiLo optical imaging technique is comparable to that with confocal microscopy.

Advances in Optimal Detection of Cancer by Image Processing; Experience with Lung and Breast Cancers

  • Mohammadzadeh, Zeinab;Safdari, Reza;Ghazisaeidi, Marjan;Davoodi, Somayeh;Azadmanjir, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5613-5618
    • /
    • 2015
  • Clinicians should looking for techniques that helps to early diagnosis of cancer, because early cancer detection is critical to increase survival and cost effectiveness of treatment, and as a result decrease mortality rate. Medical images are the most important tools to provide assistance. However, medical images have some limitations for optimal detection of some neoplasias, originating either from the imaging techniques themselves, or from human visual or intellectual capacity. Image processing techniques are allowing earlier detection of abnormalities and treatment monitoring. Because the time is a very important factor in cancer treatment, especially in cancers such as the lung and breast, imaging techniques are used to accelerate diagnosis more than with other cancers. In this paper, we outline experience in use of image processing techniques for lung and breast cancer diagnosis. Looking at the experience gained will help specialists to choose the appropriate technique for optimization of diagnosis through medical imaging.

임상가를 위한 특집 2 - 임플란트시술을 위한 CBCT의 활용 (CBCT Imaging for Dental Implants)

  • 안서영
    • 대한치과의사협회지
    • /
    • 제50권4호
    • /
    • pp.189-195
    • /
    • 2012
  • Various imaging modalities have been used for dental implant assessment in the different stages of implant treatment. Basic imaging, such as panoramic and periapical radiographs, are generally useful and cost-effective but do not provide the cross-sectional visualization or interactive image analysis that can be obtained with more sophisticated imaging techniques, such as Cone-Beam Computed Tomography(CBCT) imaging. This article includes the applications of CBCT imaging and their diagnostic contribution to presurgical evaluation, treatment planning, and postoperative assessment of dental implants.

도파민과 세로토닌 운반체 및 수용체 영상을 위한 방사성리간드 (Radioligands for Imaging Dopamine and Serotonin Receptors and Transporters)

  • 지대윤
    • 대한핵의학회지
    • /
    • 제34권3호
    • /
    • pp.159-168
    • /
    • 2000
  • In the 1980s, techniques to image the human subjects in a three-dimensional direction were developed. Two major techniques are SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) which allow the detector to detect a single photon or annihilation photons emitted from the subjects injected with radiopharmaceuticals. Since the latter two techniques can measure the density of receptors, enzymes and transporters in living human, it may be very important project to develop selective methods of labeling with radionuclides and to develop new radiopharmaceuticals. There has been a considerable interest in developing new compounds which specifically bind to dopamine and serotonin receptor and transporters, and it will be thus very useful to label those compounds with radionuclides in order to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the characteristics of radioligands for the imaging of dopamine and serotonin receptors and transporters. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

  • PDF

A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging

  • Beomsue Kim;Hongmin Kim;Songhui Kim;Young-ran Hwang
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.9.1-9.10
    • /
    • 2021
  • Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권3호
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

EHT data processing and BH shadow imaging techniques

  • Cho, Ilje
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.59.2-59.2
    • /
    • 2019
  • Event Horizon Telescope (EHT) aims to resolve the innermost region to the super massive black hole (SMBH) with its extremely high angular resolution (~20-25 uas) and enhanced sensitivity (down to 1-10 mJy) in concert with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm wavelength. This has a great importance as the first observational probe of the black hole shadow which has been theoretically predicted as a ring-like emission affected by the general relativistic effect under a strong gravitational field of SMBH. During the 2017 April 5-11, four nights of EHT observing campaign were carried out towards its primary targets, M87 and $SgrA{\ast}$. To robustly ensure the data processing, independent pipelines for various radio data calibration softwares (e.g., AIPS, HOPS, CASA) have been developed and cross-compared each other. The EHT has also been developing newer interferometric imaging techniques (e.g., eht-imaging-library, SMILI, dynamical imaging), as well as using an established method (CLEAN). With these, the EHT has designed various strategies which will be adopted for convincing imaging results. In this talk, I review how the robustness of EHT data processing and imaging will be validated so that the results can be ensured against well known uncertainties or biases in the interferometric data calibration and imaging.

  • PDF

Assessment of Left Ventricular Function with Single Breath-Hold Magnetic Resonance Cine Imaging in Patients with Arrhythmia

  • Bak, So Hyeon;Kim, Sung Mok;Park, Sung-Ji;Kim, Min-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권1호
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: To evaluate quantification results of single breath-hold (SBH) magnetic resonance (MR) cine imaging compared to results of conventional multiple breath-hold (MBH) technique for left ventricular (LV) function in patients with cardiac arrhythmia. Materials and Methods: MR images of patients with arrhythmia who underwent MBH and SBH cine imaging at the same time on a 1.5T MR scanner were retrospectively reviewed. Both SBH and MBH cine imaging were performed with balanced steady state free precession. SBH scans were acquired using temporal parallel acquisition technique (TPAT). Fifty patients ($65.4{\pm}12.3years$, 72% men) were included. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), myocardial mass, and LV regional wall motion were evaluated. Results: EF, myocardial mass, and regional wall motion were not significantly different between SBH and MBH acquisition techniques (all P-values > 0.05). EDV, ESV, and SV were significant difference between the two techniques. These parameters for SBH cine imaging with TPAT tended to lower than those in MBH. EF and myocardial mass of SBH cine imaging with TPAT showed good correlation with values of MBH cine imaging in Passing-Bablok regression charts and Bland-Altman plots. However, SBH imaging required significantly shorter acquisition time than MBH cine imaging ($15{\pm}7sec$ vs. $293{\pm}104sec$, P < 0.001). Conclusion: SBH cine imaging with TPAT permits shorter acquisition time with assessment results of global and regional LV function comparable to those with MBH cine imaging in patients with arrhythmia.

Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques

  • Junghoan Park;Jeong Min Lee;Gunwoo Lee;Sun Kyung Jeon;Ijin Joo
    • Korean Journal of Radiology
    • /
    • 제23권1호
    • /
    • pp.13-29
    • /
    • 2022
  • Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.