• 제목/요약/키워드: Imaging studies

검색결과 1,610건 처리시간 0.024초

PET 리포터 유전자를 이용한 이행성 연구 (Translational Imaging with PET Reporter Gene Approaches)

  • 민정준
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권6호
    • /
    • pp.279-292
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of biomedical research. These tools have been validated recently in variety of research models, and have born shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of PET technologies as they have been used in imaging biological processes for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong;Li, Nan;Jia, Sen;Zhang, Xiaoliang;Li, Ye
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.229-251
    • /
    • 2021
  • Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging

  • Cherry Kim;Wooil Kim;Sung-Joon Park;Young Hen Lee;Sung Ho Hwang;Hwan Seok Yong;Yu-Whan Oh;Eun-Young Kang;Ki Yeol Lee
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.838-850
    • /
    • 2020
  • Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권3호
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향 (Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids)

  • 하성진;김문희;박대환
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

레이저 유도방식의 실시간 광음향 단층영상 기술 개발과 팬텀이미지 평가 (Development of Laser Induced Real Time Photoacoustic Tomography Imaging System and Phantom Evaluation)

  • 유상훈;신동호;송철규
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.879-884
    • /
    • 2012
  • Photoacoustic Tomography (PAT) is a promising medical imaging modality by reason of its particularity. It combines optical imaging contrast of optical imaging with the spatial resolution of ultrasound imaging and can demonstrate change of biological feature in an image. For that reason, many studies are in progress to apply this technic for diagnosis. But, real-time PAT system is necessary to confirm a biological reaction induced by external stimulation immediately. Thus, we developed a real-time PAT system using linear array transducer and self-developed Data acquisition board (DAQ) resources, To evaluate the feasibility and performance of our proposed system, two type of phantom test were also performed. As a result of those experiments, the proposed system shows enough performance and confirm its usefulness.

국소 간 종양의 조직적 특성을 평가하는데 있어 최근 핵의학의 역할 (Changing Role of Nuclear Medicine for the Evaluation of Focal Hepatic Tumors: From Lesion Detection to Tissue Characterization)

  • 김천기;윤미진
    • 대한핵의학회지
    • /
    • 제32권3호
    • /
    • pp.211-224
    • /
    • 1998
  • The role of scintigraphic imaging has moved from the detection of lesions to the tissue-specific characterization of lesions over the past 2 decades. Major advances in nuclear medicine imaging include: 1) positron imaging, 2) improved instrumentation, such as the use of multidetector (dual or triple head) gamma cameras for single photon emission computed tomography, and 3) development of numerous new radiopharmaceuticals for positron or single photon imaging (labeled glucose analogue, amino acids, fatty acids, hormones, drugs, receptor ligands, monoclonal antibodies, etc). These advances have resulted in a significantly improved efficacy of radionuclide techniques for the evaluation of various tumors, including those within the liver. The current role of nuclear medicine in the evaluation of focal hepatic tumors is reviewed in this article with an emphasis on the clinical applications of various tracer studies and imaging findings.

  • PDF

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • 제9권1호
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Synthesis of a squaric acid-derived molecular probe for near-infrared fluorescence and photoacoustic imaging

  • Jung Eun Park;Yong Dae Park;Jongho Jeon
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.177-181
    • /
    • 2020
  • Dual-modality imaging strategy using near-infrared fluorescence (FLI) and photoacoustic imaging (PAI) demands a suitable probe to enable dual-modular signal production. Herein, we demonstrate a synthetic protocol of small molecular dye for dual-modular FLI and PAI. A condensation reaction between squaric acid and carboxypentyl benzoindolium, and followed by basic hydrolysis to give the benzoindole derived squaraine (BSQ) dye in 49% yield. Next, the carboxylic acid group of BSQ was further functionalized with N-hydroxysuccinimide or azide group for an efficient conjugation with a targeting biomolecule. BSQ showed a maximum fluorescent emission at around 680 nm and the photoacoustic signal reached a maximum intensity at 680-700 nm. Based on these results, we conclude that BSQ analogs will be useful probes for dual-modular (FLI/PAI) imaging studies in animal models.