• Title/Summary/Keyword: Imaging Processing Technique

Search Result 186, Processing Time 0.022 seconds

Classification of Cognitive States from fMRI data using Fisher Discriminant Ratio and Regions of Interest

  • Do, Luu Ngoc;Yang, Hyung Jeong
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.56-63
    • /
    • 2012
  • In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

Adaptive Medical Image Compression Based on Lossy and Lossless Embedded Zerotree Methods

  • Elhannachi, Sid Ahmed;Benamrane, Nacera;Abdelmalik, Taleb-Ahmed
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.40-56
    • /
    • 2017
  • Since the progress of digital medical imaging techniques, it has been needed to compress the variety of medical images. In medical imaging, reversible compression of image's region of interest (ROI) which is diagnostically relevant is considered essential. Then, improving the global compression rate of the image can also be obtained by separately coding the ROI part and the remaining image (called background). For this purpose, the present work proposes an efficient reversible discrete cosine transform (RDCT) based embedded image coder designed for lossless ROI coding in very high compression ratio. Motivated by the wavelet structure of DCT, the proposed rearranged structure is well coupled with a lossless embedded zerotree wavelet coder (LEZW), while the background is highly compressed using the set partitioning in hierarchical trees (SPIHT) technique. Results coding shows that the performance of the proposed new coder is much superior to that of various state-of-art still image compression methods.

Fast Motion Artifact Correction Using l$_1$-norm (l$_1$-norm을 이용한 움직임 인공물의 고속 보정)

  • Zho, Sang-Young;Kim, Eung-Yeop;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.22-30
    • /
    • 2009
  • Purpose : Patient motion during magnetic resonance (MR) imaging is one of the major problems due to its long scan time. Entropy based post-processing motion correction techniques have been shown to correct motion artifact effectively. One of main limitations of these techniques however is its long processing time. In this study, we propose several methods to reduce this long processing time effectively. Materials and Methods : To reduce the long processing time, we used the separability property of two dimensional Fourier transform (2-D FT). Also, a computationally light metric (sum of all image pixel intensity) was used instead of the entropy criterion. Finally, partial Fourier reconstruction, in particular the projection onto convex set (POCS) method, was combined thereby reducing the size of the data which should be processed and corrected. Results : Time savings of each proposed method are presented with different data size of brain images. In vivo data were processed using the proposed method and showed similar image quality. The total processing time was reduced to 15% in two dimensional images and 30% in the three dimensional images. Conclusion : The proposed methods can be useful in reducing image motion artifacts when only post-processing motion correction algorithms are available. The proposed methods can also be combined with parallel imaging technique to further reduce the processing times.

  • PDF

Parametric Image Generation and Enhancement in Contrast-Enhanced Ultrasonography (조영증강 초음파 진단에서 파라미터 영상 생성 및 개선 기법)

  • Kim, Shin-Hae;Lee, Eun-Lim;Jo, Eun-Bee;Kim, Ho-Joon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • This paper proposes image processing techniques that improve usability and performance in a diagnostic system of the contrast-enhanced ultrasonography. For a methodology for visualizing diagnostic parameter data in an ultrasonic medical image, an expression of transition time data with successive pixel values and a method of generating a lesion diagnostic parameter image with four categorized values are presented. We also introduce a MRF-based image enhancement technique to eliminate noises from generated parametric images. Such parametric image generation technique can overcome the difficulty of discriminating dynamic change in patterns in the ultrasonography. The technique clarifies the contour of the region in the original image and facilitates visual determination of the characteristics of the lesion through four colors. With regard to this MRF-based image enhancement, we define the energy function of consecutive pixel values and develop a technique to optimize it, and the usability of the proposed theory is examined through experiments with medical images.

Spaceborne SAR System Design and Performance Analysis (위성 영상 레이다(SAR)시스템 설계와 성능분석)

  • Gwak, Yeong-Gil;Jeong, Cheol-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.26-39
    • /
    • 2006
  • A synthetic aperture radar (SAR) system can provide all-weather, day and night imaging capability, and thus, is very useful in surveillance for both civil and military applications. In this paper, the X-band spaceborne SAR system design procedure is introduced with the key design parameters for mission and system requirements characterized by the small satellite platform. The SAR imaging mode design technique is presented, and the design results are analyzed for standard mode performance evaluation. In line with the system requirements, the X-band SAR payload and ground reception/processing sub-systems are presented with the key design results and image applications examples. The designed small satellite SAR system shows the wide range of imaging capability, and proves to be an effective surveillance system in light-weight, high-performance and cost-effective points of view.

  • PDF

MRI Artifact Correction due to Unknown Respiratory Motion (미지 호흡운동에 의한 MRI 아티팩트의 수정)

  • 김응규
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.53-62
    • /
    • 2004
  • In this study, an improved post-processing technique for correcting MRI artifact due to the unknown respiratory motion in the imaging plane is presented. Respiratory motion is modeled by a two-Dimensional linear expending-shrinking movement. Assuming that the body tissues are incompressible fluid like materials, the proton density per unit volume of the imaging object is kept constant. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimatead a reconstruction algorithm based on biliner superposition method was used to correct the MRI artifact. In the case of motion parameters are unknown, first, the spectrum shift method is applied to find the respiratory fluctuation function, x directional expansion coefficient and x directional expansion center. Next, y directional expansion coefficient and y directional expansion center are estimated by using the minimum energy method. Finally, the validity of this proposed method is shown to be effective by using the simulated motion images.

Improvement of Two-Dimensional Terahertz Image by Digital Image Processing (데이터 처리를 통한 테라헤르츠 (THz) 파의 2차원 이미지 개선)

  • Shon, Chae-Hwa;Jin, Yun-Sik;Jeon, Seuk-Gy;Kim, Keun-Ju;Jung, Sun-Shin;Yong, Chong-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.500-507
    • /
    • 2005
  • Two-dimensional (2D) images that are produced by terahertz (THz) irradiation we presented. It is possible to obtain 2D image of various materials by observing the amplitude and the phase of the THz signals which go through them. Better images are produced by combining the amplitude and phase of the signal rather than using only one of these. Homomorphic filtering that is one elf the well-known technique of digital image signal processing is effective to reduce the noise signal and can provide better quality images. The results can be applied to real-time imaging afterwards.

The arterial blood supply of the temporomandibular joint: an anatomical study and clinical implications

  • Cuccia, Antonino Marco;Caradonna, Carola;Caradonna, Domenico;Anastasi, Giuseppe;Milardi, Demetrio;Favaloro, Angelo;De Pietro, Anita;Angileri, Tommaso Maurizio;Caradonna, Luigi;Cutroneo, Giuseppina
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • Purpose: The aim of this study was to analyze three-dimensional images of the arterial supply to the temporo-mandibular joint. Materials and Methods: Ten patients (five men and five women, mean age 36 years) without signs or symptoms of temporomandibular disorders, who underwent contrast-enhanced computed tomographic (CT) scanning with intravenous contrast, were studied. The direct volume rendering technique of CT images was used, and a data set of images to visualize the vasculature of the human temporomandibular joint in three dimensions was created. After elaboration of the data through post-processing, the arterial supply of the temporomandibular joint was studied. Results: The analysis revealed the superficial temporal artery, the anterior tympanic artery, the deep temporal artery, the auricular posterior artery, the transverse facial artery, the middle meningeal artery, and the maxillary artery with their branches as the main arterial sources for the lateral and medial temporomandibular joint. Conclusion: The direct volume rendering technique was found to be successful in the assessment of the arterial supply to the temporomandibular joint. The superficial temporal artery and maxillary artery ran along the lateral and medial sides of the condylar neck, suggesting that these arteries are at increased risk during soft-tissue procedures such as an elective arthroplasty of the temporomandibular joint.

The Evaluation of Clinical Usefulness on Application of Half-Time Acquisition Factor in Gated Cardiac Blood Pool Scan (게이트심장혈액풀 스캔에서 Half-Time 획득 인자 적용에 따른 임상적 유용성 평가)

  • Lee, Dong-Hun;Yoo, Hee-Jae;Lee, Jong-Hun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.192-198
    • /
    • 2008
  • Purpose: The scan time reduction helps to yield more accurate results and induce the minimization of patient's motion. Also we can expect that satisfaction of examination will increase. Nowdays medical equipment companies have developed various programs to reduce scan time. We used Onco. Flash (Pixon method, SIEMENS) that is an image processing technique gated cardiac blood pool scan and going to evaluate its clinical usefullness. Materials and Method: We analyzed the 50 patients who were examined by gated blood pool scan in nuclear medicine department of Asan Mediacal Center from June $20^{th}$ 2008 to August $14^{th}$ 2008. We acquired the Full-time (6000 Kcounts) and Half-time (3000 Kcounts) LAO image in same position. And we acquired LVEF values ten times from Full-time, Half-time images acquired by the image processing technique and analyzed its mean and standard deviation values. To estimate LVEF in same conditions, we set automatic location of the LV ROI and background ROI based on same X and Y-axis. Also we performed blinding tests to physician. Results: After making a quantitative analysis of the 50 patients EF values, each mean${\pm}$standard deviation is shown at Full-time image $68.12{\pm}7.84%$, Half- time (acquired by imaging processing technique) $68.49{\pm}8.73%$. In the 95% confidence limit, there was no statistically significant difference (p>0.05). After blinding test with a physician for making a qualitative analysis, there was no difference between Full-time image and Half-time image acquired by the image processing technique for observing LV myocardial wall motion. Conclusion: Gated cardiac blood pool scan has been reported its relatively exact EF measured results than ultrasound or CT. But gated cardiac blood pool scan takes relatively longer time than other exams and now it needs to improve time competitive power. If we adapt Half-time technique to gated cardiac blood pool scintigraphy based on this study, we expect to reduce possible artifacts and improve accessibility as well as flexibility to exam. Also we expect patient's satisfaction.

  • PDF