• Title/Summary/Keyword: Images quality

Search Result 3,156, Processing Time 0.033 seconds

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.

Fractal Coding of Three Dimensional Medical Images with Perceptually Enhanced Matching (삼차원 의학 영상에서 시각적으로 향상된 정합을 사용한 프랙탈 부호화)

  • Ahn, C.B;Song, Y.C;Shin, H.S
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.305-312
    • /
    • 1996
  • A new three dimensional fractal coding is proposed with a perceptually enhanced matching. Since most of medical images (e.g. computed tomoyaphy or magnetic resonance images) have three dimensional characters, searching regions are extended to adjacent slices. For a perceptually enhanced matching, a high frequency boost filter is used for pre-filtering images to be encoded, and a least mean square error matching is applied to the edge enhanced Images rather than the original images. From simulation with magnetic resonance images($255\times255$, 8bits/pixel), reconstructed images by the proposed compression algorithm show much improved subjective image quality with higher peak signnal-to-noise ratio compared to those by existing fractal coding algorithms at compression ratios of about 10.

  • PDF

High Quality Image Interpolation for Color Filter Arrays (Color Filter Array에 대한 고품질 영상보간기법)

  • 이봉준;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.171-173
    • /
    • 2000
  • In this paper, we present a new interpolation method for the color filter away(CFA). In order to capture color images. typical input devices use a single chip CCD imaging sensor with color filter array. As a result, the single chip CCD does not provide sufficient color resolutions since it arranges different color filters sequentially on a single CCD, resulting in aliasing noise and loss of resolution. In order to reconstruct high quality color images, we propose to use the interpolation algorithm using high order B-splines. Experiments show promising results.

  • PDF

Speckle Noise Reduction for Ultrasonic Images Using Homomorphic Wavelet-based MMSE Filter (호모모르픽 웨이브렛 기반 MMSE 필터를 이용한 초음파영상의 스펙클 잡음 제거)

  • 박원용;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.679-682
    • /
    • 2000
  • In this paper, a MMSE filter in homomorphic wavelet transform domain is proposed for restoring an ultrasonic images corrupted by speckle noise. In order to remove effectively the speckle noise which is a kind of multiplicative noise, speckle noise is transformed into a form of additive noise and then the additive noise is denoised through the MMSE filter in homomorphic wavelet transform domain. The proposed method shows much higher quality in terms of ISNR and subject quality.

  • PDF

High-visibility 2D/3D LCD with HDDP Arrangement and its Optical Characterization Methods

  • Uehara, Shin-Ichi;Hiroya, Tsutomu;Kusanagi, Hidenori;Shigemura, Kouji;Asada, Hideki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.147-150
    • /
    • 2008
  • We have developed a 3.1-inch diagonal 2D/3D LCD with a novel pixel arrangement, called HDDP (Horizontally Double-Density Pixels), for high-quality 3D images. We have improved 3D visibility by broadening the 3D viewing zone where high-quality images can be seen, and we propose optical characterization methods which can evaluate the high-visibility autostereoscopic displays correctly.

  • PDF

A novel method for determining dose distribution on panoramic reconstruction computed tomography images from radiotherapy computed tomography

  • Hiroyuki Okamoto;Madoka Sakuramachi;Wakako Yatsuoka;Takao Ueno;Kouji Katsura;Naoya Murakami;Satoshi Nakamura;Kotaro Iijima;Takahito Chiba;Hiroki Nakayama;Yasunori Shuto;Yuki Takano;Yuta Kobayashi;Hironori Kishida;Yuka Urago;Masato Nishitani;Shuka Nishina;Koushin Arai;Hiroshi Igaki
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.129-137
    • /
    • 2024
  • Purpose: Patients with head and neck cancer (HNC) who undergo dental procedures during radiotherapy (RT) face an increased risk of developing osteoradionecrosis (ORN). Accordingly, new tools must be developed to extract critical information regarding the dose delivered to the teeth and mandible. This article proposes a novel approach for visualizing 3-dimensional planned dose distributions on panoramic reconstruction computed tomography (pCT) images. Materials and Methods: Four patients with HNC who underwent volumetric modulated arc therapy were included. One patient experienced ORN and required the extraction of teeth after RT. In the study approach, the dental arch curve (DAC) was defined using an open-source platform. Subsequently, pCT images and dose distributions were generated based on the new coordinate system. All teeth and mandibles were delineated on both the original CT and pCT images. To evaluate the consistency of dose metrics, the Mann-Whitney U test and Student t-test were employed. Results: A total of 61 teeth and 4 mandibles were evaluated. The correlation coefficient between the 2 methods was 0.999, and no statistically significant difference was observed (P>0.05). This method facilitated a straightforward and intuitive understanding of the delivered dose. In 1 patient, ORN corresponded to the region of the root and the gum receiving a high dosage (approximately 70 Gy). Conclusion: The proposed method particularly benefits dentists involved in the management of patients with HNC. It enables the visualization of a 3-dimensional dose distribution in the teeth and mandible on pCT, enhancing the understanding of the dose delivered during RT.

Comparison of Effectiveness about Image Quality and Scan Time According to Reconstruction Method in Bone SPECT (영상 재구성 방법에 따른 Bone SPECT 영상의 질과 검사시간에 대한 실효성 비교)

  • Kim, Woo-Hyun;Jung, Woo-Young;Lee, Ju-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: Nowadays in the nuclear medicine, many studies and efforts are being made to reduce the scan time, as well as the waiting time to be needed to execute exams after injection of radionuclide medicines. Several methods are being used in clinic, such as developing new radionuclide compounds that enable to be absorbed into target organs more quickly and reducing acquisition scan time by increase the number of Gamma Camera detectors to examine. Each medical equipment manufacturer has improved the imaging process techniques to reduce scan time. In this paper, we tried to analyze the difference of image quality between FBP, 3D OSEM reconstruction methods that commercialized and being clinically applied, and Astonish reconstruction method (A kind of Iterative fast reconstruction method of Philips), also difference of image quality on scan time. Material and Methods: We investigated in 32 patients that examined the Bone SPECT from June to July 2008 at department of nuclear medicine, ASAN Medical Center in Seoul. 40sec/frame and 20sec/frame images were acquired that using Philips‘ PRECEDENCE 16 Gamma Camera and then reconstructed those images by using the Astonish (Philips’ Reconstruction Method), 3D OSEM and FBP methods. The blinded test was performed to the clinical interpreting physicians with all images analyzed by each reconstruction method for qualitative analysis. And we analyzed target to non target ratio by draws lesions as the center of disease for quantitative analysis. At this time, each image was analyzed with same location and size of ROI. Results: In a qualitative analysis, there was no significant difference by acquisition time changes in image quality. In a quantitative analysis, the images reconstructed Astonish method showed good quality due to better sharpness and distinguish sharply between lesions and peripheral lesions. After measuring each mean value and standard deviation value of target to non target ratio with 40 sec/frame and 20sec/frame images, those values are Astonish (40 sec-$13.91{\pm}5.62$ : 20 sec-$13.88{\pm}5.92$), 3D OSEM (40 sec-$10.60{\pm}3.55$ : 20 sec-$10.55{\pm}3.64$), FBP (40 sec-$8.30{\pm}4.44$ : 20 sec-$8.19{\pm}4.20$). We analyzed target to non target ratio from 20 sec and 40 sec images. And we analyzed the result, In Astonish (t=0.16, p=0.872), 3D OSEM (t=0.51, p=0.610), FBP (t=0.73, p=0.469) methods, there was no significant difference statistically by acquisition time change in image quality. But FBP indicates no statistical differences while some images indicate difference between 40 sec/frame and 20 sec/frame images by various factors. Conclusions: In the circumstance, try to find a solution to reduce nuclear medicine scan time, the development of nuclear medicine equipment hardware has decreased while software has marched forward at a relentless. Due to development of computer hardware, the image reconstruction time was reduced and the expanded capacity to restore enables iterative methods that couldn't be performed before due to technical limits. As imaging process technique developed, it reduced scan time and we could observe that image quality keep similar level. While keeping exam quality and reducing scan time can induce the reduction of patient's pain and sensory waiting time, also accessibility of nuclear medicine exam will be improved and it provide better service to patients and clinical physician who order exams. Consequently, those things make the image of department of nuclear medicine be improved. Concurrent Imaging - A new function that setting up each image acquisition parameter and enables to acquire images simultaneously with various parameters to once examine.

  • PDF

Effects of Depth Map Quantization for Computer-Generated Multiview Images using Depth Image-Based Rendering

  • Kim, Min-Young;Cho, Yong-Joo;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Kyoung-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2175-2190
    • /
    • 2011
  • This paper presents the effects of depth map quantization for multiview intermediate image generation using depth image-based rendering (DIBR). DIBR synthesizes multiple virtual views of a 3D scene from a 2D image and its associated depth map. However, it needs precise depth information in order to generate reliable and accurate intermediate view images for use in multiview 3D display systems. Previous work has extensively studied the pre-processing of the depth map, but little is known about depth map quantization. In this paper, we conduct an experiment to estimate the depth map quantization that affords acceptable image quality to generate DIBR-based multiview intermediate images. The experiment uses computer-generated 3D scenes, in which the multiview images captured directly from the scene are compared to the multiview intermediate images constructed by DIBR with a number of quantized depth maps. The results showed that there was no significant effect on depth map quantization from 16-bit to 7-bit (and more specifically 96-scale) on DIBR. Hence, a depth map above 7-bit is needed to maintain sufficient image quality for a DIBR-based multiview 3D system.

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Blending of Contrast Enhancement Techniques for Underwater Images

  • Abin, Deepa;Thepade, Sudeep D.;Maitre, Amulya R.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.