• Title/Summary/Keyword: Images of Seoul

Search Result 2,108, Processing Time 0.029 seconds

The Study on the Medical Image Compression using the Characteristics of Human Visual System (인간 시각 장치의 특성을 이용한 의학 영상 압축에 관한 연구)

  • Chee, Young-Joon;Park, Kwang-Seok
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.38-41
    • /
    • 1993
  • For efficient transmission and storage of digital images, the requirements of image compression is incresing. Because the medical images contain diagnostic information small distortion has been more important factor than the low rate in such images. Generally the distortion in image is the difference of pixel values. However the image is percieved by human visual systems. So it is reasonable that human visual system characteristics be used as criteria of the image compression. In this paper, the Just Noticeable Difference curve is used as criteria of determining the homogeniety of a block and acceptibility of distortions. And Block Truncation Coding using spatial masking effect of eyes is adopted to code the blocks which contain line components. And small blocks which varies slowly can be approximated to polynomial functions successfully. We proposed the hybrid block coding scheme based on the block characteristics and human visual system characteristics. Simulation to several kinds of the medical images using this method showed that medical images can be compressed 5:1 - 10:1 without noticeable distortion.

  • PDF

Cosmic Ray Flux Variation Estimated from the Raw Solar Images

  • Oh, Suyeon;Park, Hyungmin;Park, Keunchan;Chae, Jongchul;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.96.2-96.2
    • /
    • 2013
  • The solar images are taken by the CCD detectors of the Sun monitoring satellites. The solar images are constructed after removing the traces of cosmic rays on the raw CCD data files. Thus, while applying the method of removing the cosmic rays traces, we can estimate the cosmic rays flux by counting the number of traces. The cosmic ray flux in the steady state might be the sum of the solar and galactic cosmic rays. However, the abrupt change in the flux could be assumed to be originated from the Sun. Therefore, we can identify the solar origins of the sudden solar cosmic ray flux changes from the phenomena shown in the processed solar images taken by SOHO/EIT. As the results, the estimated cosmic ray flux in the steady state is the anti-correlated with sunspot numbers, which shows the minima in cosmic ray flux at the solar cycle maxima defined by the sunspot numbers. The profiles of estimated solar cosmic ray associated with the ground level enhancements have the significant increase in the cosmic ray flux with good correlation. Thus, the solar images are valuable data useful in estimating the solar cosmic ray long term and transient flux variations.

  • PDF

Reference line-pair values of panoramic radiographs using an arch-form phantom stand to assess clinical image quality

  • Choi, Da-Hye;Choi, Bo-Ram;Choi, Jin-Woo;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.7-15
    • /
    • 2013
  • Purpose: This study was performed to suggest reference line-pair values of panoramic images with clinically desirable qualities using an arch-form phantom stand. Materials and Methods: The line-pair test phantom was chosen. A real skull model was selected for setting the arch-form model of the phantom stand. The phantom stand had slits in four regions (incisor, premolar, molar, TMJ). Four raw images of the test phantom in each region and one raw image of the real skull were converted into 50 test phantom images and 50 skull phantom images with various line-pair values. 50 post-processed real skull phantom images were divided into 4 groups and were randomly submitted to 14 evaluators. Image quality was graded on a 4 point scale (1. good, 2. normal, 3. poor but interpretable, and 4. not interpretable). The reference line pair was determined as the first line-pair value scored less than 2 points. Result: The mean scores tended to decrease as the line-pair values increased. The reference line-pair values were 3.19 LP/mm in the incisor, 2.32 LP/mm in the premolar and TMJ, and 1.88 LP/mm in the molar region. Conclusion: Image quality evaluation methods and criteria should be able to assess various regions considering the characteristics of panoramic systems. This study suggested overall and regional reference line-pair values and established a set of standard values for them.

Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network (k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.229-238
    • /
    • 2019
  • Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.

Comparison of different radiographic methods for the detection of the mandibular canal

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Purpose: To compare the visibility of the mandibular canal at the different radiographic methods such as conventional panoramic radiographs, Vimplant multi planar reformatting (MPR)-CT panoramic images, Vimplant MPR-CT paraxial images and film-based DentaScan MPR-CT images. Materials and Methods: Data of 11 mandibular dental implant patients, who had been planned treatment utilizing both panoramic and MPR-CT examination with DentaScan software (GE Medical systems, Milwaukee, USA), were used in this study. The archived axial CT data stored on CD-R discs were transferred to a personal computer with 17' LCD monitor. Paraxial and panoramic images were reconstructed using Vimplant software (CyberMed Inc., Seoul, Korea). Conventional panoramic radiographs, monitor-based Vimplant MPR-CT panoramic images, monitor-based Vimplant MPR-CT paraxial images, and film-based DentaScan MPR-CT images were evaluated for visibility of the mandibular canal at the mental foramen, 1 cm, 2 cm, and 3 cm posterior to mental foramen using the 4-point grading score. Results: Vimplant MPR-CT panoramic, paraxial, and DentaScan MPR-CT images revealed significantly clearer images than conventional panoramic radiographs. Particularly at the region 1 em posterior to mental foramen, conventional panoramic radiographs showed a markedly lower percentage of 'excellent' mandibular canal images than images produced by other modalites. Vimplant MPR-CT and DentaScan MPR-CT images did not show significant difference in visibility of the mandibular canal. Conclusion: The study results show that Vimplant and DentaScan MPR-CT imaging systems offer significantly better images of the mandibular canal than conventional panoramic radiograph.

  • PDF

Comparison of Fractional Anisotropy Values of Corticospinal Tract and Corpus Callosum between 6- and 25-Direction Diffusion Tensor Images in Normal Subjects

  • Lee, Jeong-Hyun;Lee, Sun-Young;Kim, Hyun-Jeong;Park, Choong-Gon;Lee, Deok-Hee;Lee, Ho-Kyu;Kim, Sang-Joon;Suh, Dae-Chul
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.20-20
    • /
    • 2003
  • Purpose: To investigate the difference of fractional anisotropy (FA) values between 6- and 25-direction diffusion tensor images (DTI) in normal adult brain. Materials and Methods: DTI was peformed in 28 normal subjects (15 subjects with 6-direction, 13 subjects with 25-direction) in a 1.5 T MR system. DTI was done with SE-EPI sequence with TR/TE/NEX 10000/84/1, 5mm slice thickness and b=1000 s/mm2. FA values were measured from 8 different anatomical locations which included both cerebral peduncles, both posterior limbs of the internal capsules, both corona radiata, genu and splenium of the corpus callosum. Statistical difference of FA was tested between 6-and 25-direction DTI.

  • PDF

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

Color Texture Analysis as a Tool for Quantitative Evaluation of Radiation-Induced Skin Injuries

  • Sung Young Lee;Jin Ho Kim;Ji Hyun Chang;Jong Min Park;Chang Heon Choi;Jung-in Kim;So-Yeon Park
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.144-152
    • /
    • 2023
  • Background: Color texture analysis was applied as a tool for quantitative evaluation of radiation-induced skin injuries. Materials and Methods: We prospectively selected 20 breast cancer patients who underwent whole-breast radiotherapy after breast-conserving surgery. Color images of skin surfaces for irradiated breasts were obtained by using a mobile skin analyzer. The first skin measurement was performed before the first fraction of radiotherapy, and the subsequent measurement was conducted approximately 10 days after the completion of the entire series of radiotherapy sessions. For comparison, color images of the skin surface for the unirradiated breasts were measured similarly. For each color image, six co-occurrence matrices (red-green [RG], red-blue [RB], and green-blue [GB] from color channels, red [R], green [G], blue [B] from gray channels) can be generated. Four textural features (contrast, correlation, energy, and homogeneity) were calculated for each co-occurrence matrix. Finally, several statistical analyses were used to investigate the performance of the color textural parameters to objectively evaluate the radiation-induced skin damage. Results and Discussion: For the R channel from the gray channel, the differences in the values between the irradiated and unirradiated skin were larger than those of the G and B channels. In addition, for the RG and RB channels, where R was considered in the color channel, the differences were larger than those in the GB channel. When comparing the relative values between gray and color channels, the 'contrast' values for the RG and RB channels were approximately two times greater than those for the R channel for irradiated skin. In contrast, there were no noticeable differences for unirradiated skin. Conclusion: The utilization of color texture analysis has shown promising results in evaluating the severity of skin damage caused by radiation. All textural parameters of the RG and RB co-occurrence matrices could be potential indicators of the extent of skin damage caused by radiation.

Efficient Algorithms to Generate Elemental Images in Integral Imaging

  • Oh, Se-Chan;Hong, Ji-Soo;Park, Jae-Hyeung;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.115-121
    • /
    • 2004
  • In this paper, we propose a new algorithm to generate elemental images in a computer generated integral imaging system. By comparing the computing time of this algorithm with that of the existing algorithm, we prove the efficiency of this algorithm. Two more algorithms considering the finite size of each pixel are also proposed. These algorithms enhance the quality of the integrated image while generating the elemental image as fast as the existing algorithm.

3-Dimensional Emission characteristics of an AC PDP Cell

  • Jung, Jae-Chul;Jeong, Dong-Cheol;Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.529-532
    • /
    • 2004
  • The spatio-temporal variation of Infra Red(IR) emission images were obtained from a real 3-dimensional discharge space of a surface discharge type, alternating current plasma display panel(AC PDP) cell with the Ne-Xe(4%) 400Torr gas mixture. IR emissions were observed in each period of the ADS(Address and Display Separation) driving scheme with ramp initializing waveform using an images intensified charge coupled device(ICCD) camera. The roles of each electrode were identified and it was compared with the results of the discharge simulation and of the wall charge distributions measured by the electro-optic technique.

  • PDF