• Title/Summary/Keyword: Image-based control

Search Result 1,828, Processing Time 0.034 seconds

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

Development of a Chameleonic Pin-Art Equipment for Generating Realistic Solid Shapes (실감 입체 형상 생성을 위한 카멜레온형 핀아트 장치 개발)

  • Kwon, Ohung;Kim, Jinyoung;Lee, Sulhee;Kim, Juhea;Lee, Sang-won;Cho, Jayang;Kim, Hyungtae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • A chameleonic surface proposed in this study was a pin-art and 3D display device for generating arbitrary shapes. A smooth and continuous surface was formed using slim telescopic actuators and high-elasticity composite material. Realistic 3D shapes were continuously generated by projecting dynamic mapping images on the surface. A slim telescopic actuator was designed to show long strokes and minimize area for staking. A 3D shape was formed by thrusting and extruding the high-elasticity material using multiple telescopic actuators. This structure was advantageous for generating arbitrary continuous surface, projecting dynamic images and lightening weight. Because of real-time synchronization, a distributed controller based on EtherCAT was applied to operate hundreds of telescopic actuators smoothly. Integrated operating software consecutively generated realistic scenes by coordinating extruded shapes and projecting 3D image from multiple projectors. An opera content was optimized for the chameleon surface and showed to an audience in an actual concert.

Investigating Applicability of Unmanned Aerial Vehicle to the Tidal Flat Zone (조간대 갯벌에서 무인항공기 활용 가능성에 관한 연구 - 수치표고모델을 중심으로 -)

  • Kim, Bum-Jun;Lee, Yoon-Kyung;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.461-471
    • /
    • 2015
  • In this study, we generated orthoimages and Digital Elevation Model (DEM) from Unmanned Aerial Vehicle (UAV) to confirm the accuracy of possibility of geospatial information system generation, then compared the DEM with the topographic height values measured from Real Time Kinematic-GPS (RTK-GPS). The DEMs were generated from aerial triangulation method using fixed-wing UAV and rotary-wing UAV, and DEM based on the waterline method also generated. For the accurate generation of mosaic images and DEM, the distorted images occurred by interior and exterior orientation were corrected using camera calibration. In addition, we set up the 30 Ground Control Points (GPCs) in order to correct of the UAVs position error. Therefore, the mosaic images and DEM were obtained with geometric error less than 30 cm. The height of generated DEMs by UAVs were compared with the levelled elevation by RTK-GPS. The value of R-square is closely 1. From this study, we could confirm that accurate DEM of the tidal flat can be generated using UAVs and these detailed spatial information about tidal flat will be widely used for tidal flat management.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

First Remote Operation of the High Voltage Electron Microscope Newly Installed in KBSI (초고전압 투과전자현미경의 원격시범운영)

  • Kim, Young-Min;Kim, Jin-Gyu;Kim, Youn-Joong;Hur, Man-Hoi;Kwon, Kyung-Hoon
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The high voltage electron microscope (HVEM) newly installed in KBSI is an advanced transmission electron microscope capable of atomic resolution (${\leq}1.2{\AA}$ point-to-point resolution) together with high titling function (${\pm}60^{\circ}$), which are suitable to do 3-dimensional atomic imaging of a specimen. In addition, the instrument can be controlled by remote operation system, named as 'FasTEM' for the HVEM, which is favorable to overcome some environmental obstacles resulting from the direct operation. The FasTEM remote operation system has been established between the headquarter of KBSI in Daejeon and the Seoul branch. The server system in the headquarter has been connected with a portable client console system in the Seoul branch using an advanced internet resource, 'KOREN' of 155 Mbps grade. Most of the HVEM functions essential to do remote operation are available on the portable client console. The experiment to acquire the high resolution image of [001] Au has been achieved by excellent transmission of control signals and communication with the HVEM. Real-time reaction like direct operation, such as controls of the illumination and projection parameters, acquisition and adjustment of each detector signal, and electrical steering of each motor-driven system has been realized in remote site. It is positively anticipated that the first remote operation of HVEM in conjunction with IT infraengineering plays a important role in constructing the network based e-Science Grid in Korea for national user s facilities.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

A study to Explore the Effect Relationship of Character and Life Goal on Happiness for Gifted Elementary Students in Science (초등과학영재학생의 인성, 생애목표와 행복감의 관계)

  • Chang, Heesun
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.161-185
    • /
    • 2016
  • The purpose of this study was to investigate for gifted elementary students in science the feature of character, life goals and happiness, and the effect relationship on happiness based on the relationship between factors. For this, independent t-test, multi-linear regression analysis and hierarchical regression were conducted. The results from this study are as follows. First, scientifically gifted elementary students show higher level of responsibility, ethics, positive self-understanding and contribution goal, but lower in material and image goal than general students. Second, character, life goal and happiness are correlated. Third, female students rather than male students and students with consideration/service character have intrinsic goals. While, the students with higher level of consideration/service and lower level of sympathy show extrinsic goals. The higher the level of consideration/service and the lower of self-control they have the higher their happiness are. Fourth, as scientifically gifted elementary students have more consideration and relationship goal, their happiness go up. While, the more they have self-growth and material goal, the lower the happiness. Fifth, the character of scientifically gifted elementary students is the factor that explains the effect on happiness more easily than life goal, relatively. The factor of life goal mediates the consideration/service and happiness. In conclusion, I hope that this study contribute to raise the happiness of scientifically gifted elementary students, and considerate the character education and counseling program for character development.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

A Study on Motion Estimator Design Using DCT DC Value (DCT 직류 값을 이용한 움직임 추정기 설계에 관한 연구)

  • Lee, Gwon-Cheol;Park, Jong-Jin;Jo, Won-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.258-268
    • /
    • 2001
  • The compression method is necessarily used to send the high quality moving picture that contains a number of data in image processing. In the field of moving picture compression method, the motion estimation algorithm is used to reduce the temporal redundancy. Block matching algorithm to be usually used is distinguished partial search algorithm with full search algorithm. Full search algorithm be used in this paper is the method to compare the reference block with entire block in the search window. It is very efficient and has simple data flow and control circuit. But the bigger the search window, the larger hardware size, because large computational operation is needed. In this paper, we design the full search block matching motion estimator. Using the DCT DC values, we decide luminance. And we apply 3 bit compare-selector using bit plane to I(Intra coded) picture, not using 8 bit luminance signals. Also it is suggested that use the same selective bit for the P(Predicted coded) and B(Bidirectional coded) picture. We compare based full search method with PSNR(Peak Signal to Noise Ratio) for C language modeling. Its condition is the reference block 8$\times$8, the search window 24$\times$24 and 352$\times$288 gray scale standard video images. The result has small difference that we cannot see. And we design the suggested motion estimator that hardware size is proved to reduce 38.3% for structure I and 30.7% for structure II. The memory is proved to reduce 31.3% for structure I and II.

  • PDF