• Title/Summary/Keyword: Image-based atmospheric correction

Search Result 38, Processing Time 0.02 seconds

A Study on Atmospheric Correction in Satellite Imagery Using an Atmospheric Radiation Model (대기복사모형을 이용한 위성영상의 대기보정에 관한 연구)

  • Oh, Sung-Nam
    • Atmosphere
    • /
    • v.14 no.2
    • /
    • pp.11-22
    • /
    • 2004
  • A technique on atmospheric correction algorithm to the multi-band reflectance of Landsat TM imagery has been developed using an atmospheric radiation transfer model for eliminating the atmospheric and surface diffusion effects. Despite the fact that the technique of satellite image processing has been continually developed, there is still a difference between the radiance value registered by satellite borne detector and the true value registered at the ground surface. Such difference is caused by atmospheric attenuations of radiance energy transfer process which is mostly associated with the presence of aerosol particles in atmospheric suspension and surface irradiance characteristics. The atmospheric reflectance depend on atmospheric optical depth and aerosol concentration, and closely related to geographical and environmental surface characteristics. Therefore, when the effects of surface diffuse and aerosol reflectance are eliminated from the satellite image, it is actually corrected from atmospheric optical conditions. The objective of this study is to develop an algorithm for making atmospheric correction in satellite image. The study is processed with the correction function which is developed for eliminating the effects of atmospheric path scattering and surface adjacent pixel spectral reflectance within an atmospheric radiation model. The diffused radiance of adjacent pixel in the image obtained from accounting the average reflectance in the $7{\times}7$ neighbourhood pixels and using the land cover classification. The atmospheric correction functions are provided by a radiation transfer model of LOWTRAN 7 based on the actual atmospheric soundings over the Korean atmospheric complexity. The model produce the upward radiances of satellite spectral image for a given surface reflectance and aerosol optical thickness.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.

ATC: An Image-based Atmospheric Correction Software in MATLAB and SML

  • Choi, Jae-Won;Won, Joong-Sun;Lee, Sa-Ro
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.417-425
    • /
    • 2008
  • An image-based atmospheric correction software ATC is implemented using MATLAB and SML (Spatial Modeler Language in ERDAS IMAGINE), and it was tested using Landsat TM/ETM+ data. This ATC has two main functional modules, which are composed of a semiautomatic type and an automatic type. The semi-automatic functional module includes the Julian day (JD), Earth-Sun distance (ESD), solar zenith angle (SZA) and path radiance (PR), which are programmed as individual small functions. For the automatic functional module, these parameters are computed by using the header file of Landsat TM/ETM+. Three atmospheric correction algorithms are included: The apparent reflectance model (AR), one-percent dark object subtraction technique (DOS), and cosine approximation model (COST). The ACT is efficient as well as easy to use in a system with MATLAB and SML.

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Design and Implementation of Hyperspectral Image Analysis Tool: HYVIEW

  • Huan, Nguyen van;Kim, Ha-Kil;Kim, Sun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2007
  • Hyperspectral images have shown a great potential for the applications in resource management, agriculture, mineral exploration and environmental monitoring. However, due to the large volume of data, processing of hyperspectral images faces some difficulties. This paper introduces the development of an image processing tool (HYVIEW) that is particularly designed for handling hyperspectral image data. Current version of HYVIEW is dealing with efficient algorithms for displaying hyperspectral images, selecting bands to create color composites, and atmospheric correction. Three band-selection schemes for producing color composites are available based on three most popular indexes of OIF, SI and CI. HYVIEW can effectively demonstrate the differences in the results of the three schemes. For the atmospheric correction, HYVIEW utilizes a pre-calculated LUT by which the complex process of correcting atmospheric effects can be performed fast and efficiently.

AVHRR MOSAIC IMAGE DATA SET FOR ASIAN REGION

  • Yokoyama, Ryuzo;Lei, Liping;Purevdorj, Ts.;Tanba, Sumio
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.285-289
    • /
    • 1999
  • A processing system to produce cloud-free composite image data set was developed. In the process, a fine geometric correction based on orbit parameters and ground control points and radiometric correction based on 6S code are applied. Presently, by using AVHRR image data received at Tokyo, Okinawa, Ulaanbaatar and Bangkok, data set of 10 days composite images covering almost whole Asian region.

  • PDF

Study on an algorithm for atmospheric correction of Landsat TM imagery using MODTRAN simulation

  • Oh, Sung-Nam;Yu, Sung-Yeol;Lee, Hyun-Kyung;Kim, Yong-Sup;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.103-109
    • /
    • 1998
  • A technique on atmospheric correction algorithm for a single band (0.76-0.90 $\mu$m) reflective of Landsat TM imagery has been developed using a radiation transfer model simulation. It proceeds in two steps: First, calculation of the surface reflectance of each pixel based on precomputed planetary albedo functions for actual atmospheres(e. g. radiosonde) and two kinds of atmospheric visibility states. Second, approximate correction of the adjacency pixel effect by taking into account the average reflectance in an 7 $\times$ 7 pixel neighbourhood and using appropriate land cover classification in reflectance. The correction functions are provided by MODTRAN model.

  • PDF

A Review on Atmospheric Correction Technique Using Satellite Remote Sensing (인공위성 원격탐사를 이용한 대기보정 기술 고찰)

  • Lee, Kwon-Ho;Yum, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.1011-1030
    • /
    • 2019
  • Remote sensing sensors used in satellites or aircrafts measure electromagnetic waves passing through the earth's atmosphere, and thus the information on the surface of the earth is affected as it is absorbed or scattered by the earth's atmosphere. Although satellites have different wavelength ranges and resolutions depending on the purpose of onboard sensors, in general, atmospheric correction must be made to remove the influence of the atmosphere in order to accurately measure the spectral signal of an object on the earth's surface. The purpose of atmospheric correction is to remove the atmospheric effect from remote sensing images to determine surface reflectivity values and to derive physical parameters of the surface. Until recently, atmospheric correction algorithms have evolved from image-based empirical methods or indirect methods using in-situ observation data to direct methods that numerically interpret more complex radiative transfer processes. This study analyzes the research records of atmospheric correction algorithms developed over the past 40 years, systematically establishes the current state of atmospheric correction technology and the results of major atmospheric correction algorithms and presents the current status and research trends of related technologies.

다중분광 자료를 이용한 영상기반의 대기보정 연구

  • Lee, Kwang-Jae;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.211-220
    • /
    • 2005
  • The purpose of this study is to examine the image-based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming KOrea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situmeasurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2_1 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3_1 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.