본 논문은 퍼지 칼라모델을 이용한 영상기반의 지능형 무인 화재감시 시스템을 제안한다. 일반적으로 화재 감시를 위해 열이나 연기를 감지하는 별도의 장치를 사용하지만, 널리 보급된 폐쇄회로를 이용하면 별도의 장치와 추가적인 비용 없이 화재를 감시할 수 있다. 이와 같이 영상만으로 화재를 감시하는 시스템은 주로 연기나 불꽃을 추출하는 방법을 사용한다. 그러나 연기검출 방식은 야간에 회색계열의 연기를 검출하기 곤란하고, 불꽃검출 방식은 온도, 인화물질, 화재규모 등에 따른 불꽃색상의 변화에 대응하지 못하는 문제점을 가지고 있다. 본 논문은 무인환경 특히 야간 및 다양한 불꽃색상의 변화에 대응할 수 있는 강인한 화재감시 시스템을 다룬다. 이를 위해 폐쇄회로의 입력영상으로부터 움직임 영역을 추출하고, 퍼지 칼라모델을 이용한 색상과 히스토그램을 이용한 모양을 통해 불꽃 여부을 판단하고, 이것의 확산이 확인될 경우, 화재경보를 발령하는 시스템을 구현한다. 마지막으로, 통제된 실제 화재 실험을 통해 제안하는 방법의 유효성을 검증한다.
본 논문에서는 자외선(UV, ultraviolet) 및 적외선(IR, infrared) 센서를 결합함으로서 불이 연소하면서 방출하는 빛의 파장을 활용한 영상신호를 검출하는 결합형 불꽃영상 검출시스템은 적외선 센서와 자외선 센서 기반의 신호처리 알고리즘 설계방안을 제안한다. 또한, 설계한 듀얼모드인 결합형 불꽃영상 검출시스템은 단독형 적외선 또는 자외선 센서 기반의 영상검출 알고리즘의 검출 성능결과를 비교한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3712-3729
/
2020
Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.
Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권12호
/
pp.5485-5506
/
2016
In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.
본 논문에서는 감시 카메라를 통해 입력된 영상 정보로 연기와 화염을 실시간 검출하는 알고리즘을 제안한다. 산불은 막대한 인명, 재산피해를 불러오기 때문에 조기 감지에 따른 초기 진화가 매우 중요하다. 제안하는 산불 감시 알고리즘은 화염 감지와 연기 감지로 나뉘는데, 화염 감지는 단일 프레임에서 YCbCr 컬러 모델에서의 조건 검사를 통하여 화염을 검출한다. 연기 감지를 위해서는 먼저 현재 영상과 인접한 프레임들의 평균 영상사이의 차를 가중치로 이용하여 배경 범위를 설정하고, 이 범위를 벗어나면서 회색조를 갖는 픽셀만을 연기영역으로 검출한다. 제안하는 화염 감지 알고리즘은 기존의 알고리즘보다 일조량에 따른 조도의 변화에 강건하고, 연기 검출 알고리즘은 단위 시간동안의 변화량을 고려하여 회색조의 픽셀만을 연기로 감지하기 때문에 효과적인 조기 산불 탐지가 가능하다. 실험 결과는 제안하는 산불 감시 알고리즘이 기존의 알고리즘보다 우수한 성능을 나타냄을 보여준다.
컬러 영상 처리 기반의 연기 검출은 화재의 조기 검출에 적합한 검출 대상이다. 연기 검출을 위한 방법으로 움직임과 색상이 전처리로서 처리되며, 확산, 질감, 형태, 방향성 등의 성질이 후처리로서 사용된다. 본 논문은 연기의 특성 중 밀도적인 분포 특성 검출 방법을 제안한다. 연기의 움직임을 10Frame 간격으로 1초 동안 축적한 이미지에 색상을 문턱치 처리해 후보영역을 생성하고, OBTP(Object Block Ternary Pattern)을 적용해 연기의 패턴임을 확인한다. 모든 처리는 Block 기반으로, 움직임 검출은 차분 영상에 적응 문턱치를 적용해 움직이는 물체의 후보영역을 결정했다. 결정된 후보영역을 1초간 축적하고 연기 색상의 문턱치 조건을 적용한다. 각각의 연기 후보 영역을 특정 위치의 16개 Block 값을 중앙 Block 값과 비교하고 삼진화 된 패턴을 연기의 패턴과 비교하여 연기를 결정한다.
Park, Wook;Park, Sung-Hwan;Jung, Hyung-Sup;Won, Joong-Sun
대한원격탐사학회지
/
제35권1호
/
pp.39-55
/
2019
In this study, we have proposed an improved method to detect forest fires by correcting the reflected signals of day images using the middle-wavelength infrared (MWIR) channel. The proposed method is allowed to remove the reflected signals only using the image itself without an existing data source such as a land-cover map or atmospheric data. It includes the processing steps for calculating a solar-reflected signal such as 1) a simple correction model of the atmospheric transmittance for the MWIR channel and 2) calculating the image-based reflectance. We tested the performance of the method using the MODIS product. When compared to the conventional MODIS fire detection algorithm (MOD14 collection 6), the total number of detected fires was improved by approximately 17%. Most of all, the detection of fires improved by approximately 30% in the high reflection areas of the images. Moreover, the false alarm caused by artificial objects was clearly reduced and a confidence level analysis of the undetected fires showed that the proposed method had much better performance. The proposed method would be applicable to most satellite sensors with MWIR and thermal infrared channels. Especially for geostationary satellites such as GOES-R, HIMAWARI-8/9 and GeoKompsat-2A, the short acquisition time would greatly improve the performance of the proposed fire detection algorithm because reflected signals in the geostationary satellite images frequently vary according to solar zenith angle.
본 연구는 실내에서 화재 발생시 시각 장애인들을 지원하기 위한 영상 기반의 화재감지기를 제안한다. 건물 내에 화재가 발생하는 비상 상황 발생시 시각 장애인은 일반인보다 상황을 인지하는 것이 늦기 때문에 위험한 상황에 노출되기 쉽다. 기존의 연기 감지기와 같은 현재의 화재 감지 방법은 화재 발생시 발생하는 화학 센서 기반 기술을 사용함으로써 감지가 상대적으로 늦으며 화재가 확산된 후에 감지가 되는 등 낮은 신뢰성이 문제가 될 수 있다. 이를 보완하기 위해 영상 기반의 화재 감지 기술이 개발되었지만 낮은 정확도가 문제가 되어 실용화되지 못하였다. 최근 인공 지능을 위한 심층 학습 분야의 큰 발전으로 영상 내의 물체 인식률이 높아짐에 따라 관련 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 보안 카메라 영상을 사용하여 화재를 감지할 수 있는 심층 학습 기반의 화재 감지기를 제안한다. 심층 학습 기반의 접근법은 영상에서 자동으로 특징을 학습할 수 있으므로 일반적으로 복잡한 상황에 대해서도 일반화가 가능하다. 본 논문에서는 화재감지 정확도와 속도 측면의 균형을 고려하여 두 개의 심층 합성곱 신경망 모델을 제안하였다. 실험을 통해 두 모델 모두 99%의 평균 정밀도로 화재를 감지할 수 있으며 첫 번째 모델은 초당 30장의 처리 속도와 76%의 정확도를 나타냈다. 두번째 모델은 초당 50장의 처리 속도와 61%의 정확도를 나타낸다. 또한 두 개의 모델의 메모리 사용량을 서로 비교하였으며 다양한 실제 화재 시나리오에서 테스트하여 신뢰할 수 있는 모델임을 증명하였다. 본 논문에 제안한 영상 기반 화재 감지기가 상용화된다면 상대적으로 실내 화재에 취약한 시각 장애인들의 안전에 도움이 될 것이다.
Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.
최근 이미지를 처리하는 딥러닝 기술이 화재 감지나 자율주행, 불량품 검출 등에서 다양하게 활용되고 있다. 특히, 제품이 오염되었는지 아닌지를 파악하기 위해 기존 센서 데이터에서 넘어온 오염물질을 통해 파악할 수 있지만, 제품의 균열이나 오염물질 자체를 이미지로 인식하는 기술도 다양한 분야에서 활발히 연구되고 있다. 본 논문에서는 오염되지 않은 정상적인 컵과 오염된 컵을 이미지를 통해 분류하는 시스템을 설계하고 이를 구현하였다. 이미지는 오픈 이미지와 촬영한 이미지를 사용하였고, 3D 객체 인식을 위한 Google Objectron을 활용해 컵 이미지의 상단 부분을 추출하여 이미지를 분석하였다. 본 연구를 통해 위생 분야에서 필요한 제품의 오염도를 이미지 기반으로 추출할 수 있는 연구에 다각도로 활용할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.