• 제목/요약/키워드: Image-based Fire Detection

검색결과 85건 처리시간 0.031초

영상기반 지능형 무인 화재감시 시스템 (Video-based Intelligent Unmanned Fire Surveillance System)

  • 전형석;염동회;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.516-521
    • /
    • 2010
  • 본 논문은 퍼지 칼라모델을 이용한 영상기반의 지능형 무인 화재감시 시스템을 제안한다. 일반적으로 화재 감시를 위해 열이나 연기를 감지하는 별도의 장치를 사용하지만, 널리 보급된 폐쇄회로를 이용하면 별도의 장치와 추가적인 비용 없이 화재를 감시할 수 있다. 이와 같이 영상만으로 화재를 감시하는 시스템은 주로 연기나 불꽃을 추출하는 방법을 사용한다. 그러나 연기검출 방식은 야간에 회색계열의 연기를 검출하기 곤란하고, 불꽃검출 방식은 온도, 인화물질, 화재규모 등에 따른 불꽃색상의 변화에 대응하지 못하는 문제점을 가지고 있다. 본 논문은 무인환경 특히 야간 및 다양한 불꽃색상의 변화에 대응할 수 있는 강인한 화재감시 시스템을 다룬다. 이를 위해 폐쇄회로의 입력영상으로부터 움직임 영역을 추출하고, 퍼지 칼라모델을 이용한 색상과 히스토그램을 이용한 모양을 통해 불꽃 여부을 판단하고, 이것의 확산이 확인될 경우, 화재경보를 발령하는 시스템을 구현한다. 마지막으로, 통제된 실제 화재 실험을 통해 제안하는 방법의 유효성을 검증한다.

UV/IR센서 결합에 의한 불꽃 영상검출의 설계 및 분석 (Design and Analysis of Flame Signal Detection with the Combination of UV/IR Sensors)

  • 강대석;김은종;문필재;신원호;강민구
    • 인터넷정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.45-51
    • /
    • 2013
  • 본 논문에서는 자외선(UV, ultraviolet) 및 적외선(IR, infrared) 센서를 결합함으로서 불이 연소하면서 방출하는 빛의 파장을 활용한 영상신호를 검출하는 결합형 불꽃영상 검출시스템은 적외선 센서와 자외선 센서 기반의 신호처리 알고리즘 설계방안을 제안한다. 또한, 설계한 듀얼모드인 결합형 불꽃영상 검출시스템은 단독형 적외선 또는 자외선 센서 기반의 영상검출 알고리즘의 검출 성능결과를 비교한다.

Video smoke detection with block DNCNN and visual change image

  • Liu, Tong;Cheng, Jianghua;Yuan, Zhimin;Hua, Honghu;Zhao, Kangcheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3712-3729
    • /
    • 2020
  • Smoke detection is helpful for early fire detection. With its large coverage area and low cost, vision-based smoke detection technology is the main research direction of outdoor smoke detection. We propose a two-stage smoke detection method combined with block Deep Normalization and Convolutional Neural Network (DNCNN) and visual change image. In the first stage, each suspected smoke region is detected from each frame of the images by using block DNCNN. According to the physical characteristics of smoke diffusion, a concept of visual change image is put forward in this paper, which is constructed by the video motion change state of the suspected smoke regions, and can describe the physical diffusion characteristics of smoke in the time and space domains. In the second stage, the Support Vector Machine (SVM) classifier is used to classify the Histogram of Oriented Gradients (HOG) features of visual change images of the suspected smoke regions, in this way to reduce the false alarm caused by the smoke-like objects such as cloud and fog. Simulation experiments are carried out on two public datasets of smoke. Results show that the accuracy and recall rate of smoke detection are high, and the false alarm rate is much lower than that of other comparison methods.

Fast Video Fire Detection Using Luminous Smoke and Textured Flame Features

  • Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5485-5506
    • /
    • 2016
  • In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.

YCbCr 컬러 모델에서의 조건 검사와 적응적 차영상을 이용한 화염 및 연기 검출 알고리즘 (A Real Time Flame and Smoke Detection Algorithm Based on Conditional Test in YCbCr Color Model and Adaptive Differential Image)

  • 이두희;유재욱;이강희;김윤
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권5호
    • /
    • pp.57-65
    • /
    • 2010
  • 본 논문에서는 감시 카메라를 통해 입력된 영상 정보로 연기와 화염을 실시간 검출하는 알고리즘을 제안한다. 산불은 막대한 인명, 재산피해를 불러오기 때문에 조기 감지에 따른 초기 진화가 매우 중요하다. 제안하는 산불 감시 알고리즘은 화염 감지와 연기 감지로 나뉘는데, 화염 감지는 단일 프레임에서 YCbCr 컬러 모델에서의 조건 검사를 통하여 화염을 검출한다. 연기 감지를 위해서는 먼저 현재 영상과 인접한 프레임들의 평균 영상사이의 차를 가중치로 이용하여 배경 범위를 설정하고, 이 범위를 벗어나면서 회색조를 갖는 픽셀만을 연기영역으로 검출한다. 제안하는 화염 감지 알고리즘은 기존의 알고리즘보다 일조량에 따른 조도의 변화에 강건하고, 연기 검출 알고리즘은 단위 시간동안의 변화량을 고려하여 회색조의 픽셀만을 연기로 감지하기 때문에 효과적인 조기 산불 탐지가 가능하다. 실험 결과는 제안하는 산불 감시 알고리즘이 기존의 알고리즘보다 우수한 성능을 나타냄을 보여준다.

물체 블록의 삼진 패턴을 이용한 컬러 영상의 연기 검출 방법 (Smoke Detection Method of Color Image Using Object Block Ternary Pattern)

  • 이용훈;김원호
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.1-6
    • /
    • 2014
  • 컬러 영상 처리 기반의 연기 검출은 화재의 조기 검출에 적합한 검출 대상이다. 연기 검출을 위한 방법으로 움직임과 색상이 전처리로서 처리되며, 확산, 질감, 형태, 방향성 등의 성질이 후처리로서 사용된다. 본 논문은 연기의 특성 중 밀도적인 분포 특성 검출 방법을 제안한다. 연기의 움직임을 10Frame 간격으로 1초 동안 축적한 이미지에 색상을 문턱치 처리해 후보영역을 생성하고, OBTP(Object Block Ternary Pattern)을 적용해 연기의 패턴임을 확인한다. 모든 처리는 Block 기반으로, 움직임 검출은 차분 영상에 적응 문턱치를 적용해 움직이는 물체의 후보영역을 결정했다. 결정된 후보영역을 1초간 축적하고 연기 색상의 문턱치 조건을 적용한다. 각각의 연기 후보 영역을 특정 위치의 16개 Block 값을 중앙 Block 값과 비교하고 삼진화 된 패턴을 연기의 패턴과 비교하여 연기를 결정한다.

An Extraction of Solar-contaminated Energy Part from MODIS Middle Infrared Channel Measurement to Detect Forest Fires

  • Park, Wook;Park, Sung-Hwan;Jung, Hyung-Sup;Won, Joong-Sun
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.39-55
    • /
    • 2019
  • In this study, we have proposed an improved method to detect forest fires by correcting the reflected signals of day images using the middle-wavelength infrared (MWIR) channel. The proposed method is allowed to remove the reflected signals only using the image itself without an existing data source such as a land-cover map or atmospheric data. It includes the processing steps for calculating a solar-reflected signal such as 1) a simple correction model of the atmospheric transmittance for the MWIR channel and 2) calculating the image-based reflectance. We tested the performance of the method using the MODIS product. When compared to the conventional MODIS fire detection algorithm (MOD14 collection 6), the total number of detected fires was improved by approximately 17%. Most of all, the detection of fires improved by approximately 30% in the high reflection areas of the images. Moreover, the false alarm caused by artificial objects was clearly reduced and a confidence level analysis of the undetected fires showed that the proposed method had much better performance. The proposed method would be applicable to most satellite sensors with MWIR and thermal infrared channels. Especially for geostationary satellites such as GOES-R, HIMAWARI-8/9 and GeoKompsat-2A, the short acquisition time would greatly improve the performance of the proposed fire detection algorithm because reflected signals in the geostationary satellite images frequently vary according to solar zenith angle.

시각 장애인을 위한 영상 기반 심층 합성곱 신경망을 이용한 화재 감지기 (Fire Detection using Deep Convolutional Neural Networks for Assisting People with Visual Impairments in an Emergency Situation)

  • 보라시 콩;원인수;권장우
    • 재활복지
    • /
    • 제21권3호
    • /
    • pp.129-146
    • /
    • 2017
  • 본 연구는 실내에서 화재 발생시 시각 장애인들을 지원하기 위한 영상 기반의 화재감지기를 제안한다. 건물 내에 화재가 발생하는 비상 상황 발생시 시각 장애인은 일반인보다 상황을 인지하는 것이 늦기 때문에 위험한 상황에 노출되기 쉽다. 기존의 연기 감지기와 같은 현재의 화재 감지 방법은 화재 발생시 발생하는 화학 센서 기반 기술을 사용함으로써 감지가 상대적으로 늦으며 화재가 확산된 후에 감지가 되는 등 낮은 신뢰성이 문제가 될 수 있다. 이를 보완하기 위해 영상 기반의 화재 감지 기술이 개발되었지만 낮은 정확도가 문제가 되어 실용화되지 못하였다. 최근 인공 지능을 위한 심층 학습 분야의 큰 발전으로 영상 내의 물체 인식률이 높아짐에 따라 관련 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 보안 카메라 영상을 사용하여 화재를 감지할 수 있는 심층 학습 기반의 화재 감지기를 제안한다. 심층 학습 기반의 접근법은 영상에서 자동으로 특징을 학습할 수 있으므로 일반적으로 복잡한 상황에 대해서도 일반화가 가능하다. 본 논문에서는 화재감지 정확도와 속도 측면의 균형을 고려하여 두 개의 심층 합성곱 신경망 모델을 제안하였다. 실험을 통해 두 모델 모두 99%의 평균 정밀도로 화재를 감지할 수 있으며 첫 번째 모델은 초당 30장의 처리 속도와 76%의 정확도를 나타냈다. 두번째 모델은 초당 50장의 처리 속도와 61%의 정확도를 나타낸다. 또한 두 개의 모델의 메모리 사용량을 서로 비교하였으며 다양한 실제 화재 시나리오에서 테스트하여 신뢰할 수 있는 모델임을 증명하였다. 본 논문에 제안한 영상 기반 화재 감지기가 상용화된다면 상대적으로 실내 화재에 취약한 시각 장애인들의 안전에 도움이 될 것이다.

The Design and Implementation of Mobile Application Solution for Forest Fire based on Drone Photography and Amazon Web Service (AWS)

  • Choi, Si-eun;Bang, Jong-ho
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.31-37
    • /
    • 2020
  • Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.

이미지 인식 기반의 컵 오염 여부 측정 시스템의 설계 및 구현 (Design and Implementation of Dangerous of Image Recognition based Cup Contamination Measurement System)

  • 이태준;채희석;이상원;김재민;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.213-215
    • /
    • 2022
  • 최근 이미지를 처리하는 딥러닝 기술이 화재 감지나 자율주행, 불량품 검출 등에서 다양하게 활용되고 있다. 특히, 제품이 오염되었는지 아닌지를 파악하기 위해 기존 센서 데이터에서 넘어온 오염물질을 통해 파악할 수 있지만, 제품의 균열이나 오염물질 자체를 이미지로 인식하는 기술도 다양한 분야에서 활발히 연구되고 있다. 본 논문에서는 오염되지 않은 정상적인 컵과 오염된 컵을 이미지를 통해 분류하는 시스템을 설계하고 이를 구현하였다. 이미지는 오픈 이미지와 촬영한 이미지를 사용하였고, 3D 객체 인식을 위한 Google Objectron을 활용해 컵 이미지의 상단 부분을 추출하여 이미지를 분석하였다. 본 연구를 통해 위생 분야에서 필요한 제품의 오염도를 이미지 기반으로 추출할 수 있는 연구에 다각도로 활용할 것으로 사료된다.

  • PDF