• 제목/요약/키워드: Image-Based Point Cloud

검색결과 113건 처리시간 0.021초

Efficient Image Size Selection for MPEG Video-based Point Cloud Compression

  • Jia, Qiong;Lee, M.K.;Dong, Tianyu;Kim, Kyu Tae;Jang, Euee S.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.825-828
    • /
    • 2022
  • In this paper, we propose an efficient image size selection method for video-based point cloud compression. The current MPEG video-based point cloud compression reference encoding process configures a threshold on the size of images while converting point cloud data into images. Because the converted image is compressed and restored by the legacy video codec, the size of the image is one of the main components in influencing the compression efficiency. If the image size can be made smaller than the image size determined by the threshold, compression efficiency can be improved. Here, we studied how to improve the compression efficiency by selecting the best-fit image size generated during video-based point cloud compression. Experimental results show that the proposed method can reduce the encoding time by 6 percent without loss of coding performance compared to the test model 15.0 version of video-based point cloud encoder.

  • PDF

무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구 (Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image)

  • 이수암;김한결;김태정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1025-1034
    • /
    • 2022
  • 본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.

자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘 (Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm)

  • 서경덕;이세나;진용규;양세정
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합 (Multi Point Cloud Integration based on Observation Vectors between Stereo Images)

  • 윤완상;김한결;이수암
    • 대한원격탐사학회지
    • /
    • 제35권5_1호
    • /
    • pp.727-736
    • /
    • 2019
  • 본 연구에서는 여러 장의 무인항공기 영상을 사용하여 대상지역에 대한 포인트 클라우드를 생성하고, 데이터 세트 간 발생하는 이격과 중복점을 제거하는 방안에 대한 연구를 수행하였다. 이를 위해 사진 측량 기반의 IBA(Incremental Bundle Adjustment)기법을 적용하여 무인기의 위치/자세를 보정하고 스테레오 페어를 구성했다. 각각의 스테레오 영상으로부터 에피폴라 영상을 생성하고 MDR(Multi-Dimensional Relaxation) 정합 기법을 적용하여 포인트 클라우드를 생성하였다. 다음으로 스테레오 영상 간 관측 벡터에 기반한 포인트 클라우드 등록을 통해 서로 다른 스테레오 페어로부터 생성된 포인트 클라우드 간 이격을 제거하였다. 마지막으로 점유격자(Occupancy grid) 기반 통합 알고리즘을 적용하여 중복점이 제거된 하나의 포인트 클라우드를 생성하였다. 실험은 무인항공기에서 취득된 연직 촬영 영상을 사용하였으며, 실험을 통해 서로 다른 스테레오 페어로부터 생성된 포인트 클라우드 간 이격 및 중복점 제거가 가능함을 확인하였다.

2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험 (Comparative Experiment of 2D and 3D DCT Point Cloud Compression)

  • 남귀중;김준식;한무현;김규헌;황민규
    • 방송공학회논문지
    • /
    • 제26권5호
    • /
    • pp.553-565
    • /
    • 2021
  • 포인트 클라우드는 3D 오브젝트를 표현하기 위한 점들의 집합으로 3D 좌표 정보인 기하 정보와 색상, 반사율 등을 나타내는 속성 정보로 이루어져 있으며, 이러한 표현 방식으로 인해 2D 영상에 비해 방대한 양의 데이터를 가진다. 따라서, 포인트 클라우드 데이터를 전송하거나 다양한 분야에서 활용하기 위해서 포인트 클라우드 데이터를 압축하는 과정이 필수적으로 요구된다. 포인트 클라우드는 2D 영상과 같이 해당 영상을 구성하는 2D 기하 정보에 대응하는 색상 정보가 모두 존재하는 것과 달리, 3D 공간 중 일부만이 색상과 같은 속성 정보를 포함하여 포인트 클라우드를 표현하고 있기에, 기하 정보에 대한 별도의 처리도 요구된다. 이와 같은 포인트 클라우드의 특징을 기반으로 고밀도 포인트 클라우드 데이터의 압축 방안으로 국제 표준화 기구 ISO/IEC 산하 MPEG에서는 포인트 클라우드 영상을 사영한 뒤 2D DCT 기반의 2D 영상 압축 코덱으로 압축하는 V-PCC 를 표준화 중에 있다. 해당 표준은 3D 포인트 클라우드를 2D로 변환하여 압축을 진행하기에 3D 공간 정보를 정확하게 표현하기에는 한계가 존재한다. 이에, 본 논문에서는 포인트 클라우드 정지영상을 3D 상에서 3D DCT로 변환하여 포인트 클라우드 데이터를 압축하는 방안인 3D Discrete Cosine Transform based Point Cloud Compression을 제시하고, 2D DCT 기반의 V-PCC와 비교하여 3D DCT의 효율성을 확인하고자 한다.

Multi-view Stereo에서 Dense Point Cloud를 위한 Fusing 알고리즘 (Fusing Algorithm for Dense Point Cloud in Multi-view Stereo)

  • 한현덕;한종기
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.798-807
    • /
    • 2020
  • 디지털 카메라와 휴대폰 카메라의 발달로 인해 이미지를 기반으로 3차원 물체를 복원하는 기술이 크게 발전했다. 하지만 Structure-from-Motion(SfM)과 Multi-view Stereo(MVS)를 이용한 결과인 dense point cloud에는 여전히 듬성한 영역이 존재한다. 이는 깊이 정보를 추정하는데 있는 어려움과, 깊이 지도를 point cloud로 fusing할 때 이웃 영상과의 깊이 정보가 불일치할 경우 깊이 정보를 삭제하고 point를 생성하지 않았기 때문이다. 본 논문에선 평면을 모델링하여 삭제된 깊이 정보에 새로운 깊이 정보를 부여하고 point를 생성하여 기존 결과보다 dense한 point cloud를 생성하는 알고리즘을 제안한다. 실험 결과를 통해 제안하는 알고리즘이 효과적으로 기존의 방법보다 dense한 point cloud를 생성함을 확인할 수 있다.

비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안 (2D Interpolation of 3D Points using Video-based Point Cloud Compression)

  • 황용해;김준식;김규헌
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.692-703
    • /
    • 2021
  • 최근 컴퓨터 그래픽 기술의 발전으로 현실의 객체를 더욱 사실적인 가상의 그래픽으로 표현하는 기술의 연구가 활발히 진행되고 있다. 포인트 클라우드는 3차원 공간 좌표와 색 정보 등을 포함하는 수많은 점을 사용해 3차원 객체를 표현하는 기술로 기존의 2차원 영상보다 많은 데이터를 사용하고 데이터 처리에 더욱 복잡한 연산이 필요하므로 포인트 클라우드를 사용한 서비스를 제공하기 위해서는 거대한 데이터 저장 공간과 높은 성능의 연산 장치가 필요하다. 현재 국제 표준기구인 MPEG에서 포인트 클라우드를 2차원 평면에 투영한 다음 비디오 코덱을 사용해 압축하는 Video-based Point Cloud Compression (V-PCC) 기술이 연구되고 있다. V-PCC 기술은 포인트 클라우드를 점유 맵 (Occupancy map), 기하 영상 (Geometry image), 속성 영상 (Attribute image) 등의 2차원 영상과 2차원 영상과 3차원 공간 사이의 관계를 알려주는 보조 정보를 사용해 압축한다. 복호화된 포인트 클라우드의 밀도를 높이거나 객체를 확대할 때, 일반적으로 3차원 연산을 사용하지만 연산 방식이 복잡하고 많은 시간을 소모하며 새로운 포인트의 정확한 생성 위치를 결정하기 힘들다는 한계가 존재한다. 이에 본 논문은 V-PCC의 포인트 클라우드가 투영된 영상에 2차원 보간 (Interpolation) 기술을 적용해 적은 연산으로 보다 정확한 추가 포인트 클라우드를 생성하는 방안을 제안한다.

수동 및 반자동 영상획득을 통한 3차원 공간복원의 비교 (A Comparison of 3D Reconstruction through the Passive and Pseudo-Active Acquisition of Images)

  • 전미정;김두범;채영호
    • 방송공학회논문지
    • /
    • 제21권1호
    • /
    • pp.3-10
    • /
    • 2016
  • 본 논문은 실내공간의 다시점 정지 영상을 서로 다른 방식으로 획득하고, 이 데이터로부터 해당 3차원 공간에 대한 기하학적인 형상정보를 담은 두 종류의 복원 결과를 비교분석 한다. 공간 내 한 평면 복원을 목표로, 첫 번째 데이터 군 확보에는 정규격자경로를 따라 정지 영상을 얻는 수동형 영상 획득 방식을 활용하였다. 두 번째 데이터 군 확보에는 한 평면의 제한된 각도 내 3차원 정보를 얻는 레이저 스캐너의 스캐닝 방식을 정지 영상 획득 방식에 응용하였다. SIFT알고리즘을 이용해 획득된 정지 영상 데이터 간의 특징점을 검출하였고 이를 기반으로 3차원 포인트 클라우드 데이터를 생성하였다. 복원된 3차원 공간정보는 생성된 포인트 클라우드의 이미지와 개수 및 평균 밀집도, 수행 시간을 통해 표현했으며 보다 정확한 실내공간의 3차원 복원에는 카메라로 획득하는 정지 영상 데이터만이 아닌 추가적인 센서를 사용한 데이터의 확보가 필요하다는 점을 확인하였다.

가상공간 생성을 위한 라이다와 스테레오 카메라 기반 포인트 클라우드 생성 방안 (Point Cloud Generation Method Based on Lidar and Stereo Camera for Creating Virtual Space)

  • 임요한;정인혁;이산성;황성수
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1518-1525
    • /
    • 2021
  • Due to the growth of VR industry and rise of digital twin industry, the importance of implementing 3D data same as real space is increasing. However, the fact that it requires expertise personnel and huge amount of time is a problem. In this paper, we propose a system that generates point cloud data with same shape and color as a real space, just by scanning the space. The proposed system integrates 3D geometric information from lidar and color information from stereo camera into one point cloud. Since the number of 3D points generated by lidar is not enough to express a real space with good quality, some of the pixels of 2D image generated by camera are mapped to the correct 3D coordinate to increase the number of points. Additionally, to minimize the capacity, overlapping points are filtered out so that only one point exists in the same 3D coordinates. Finally, 6DoF pose information generated from lidar point cloud is replaced with the one generated from camera image to position the points to a more accurate place. Experimental results show that the proposed system easily and quickly generates point clouds very similar to the scanned space.

포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법 (Automatic Generation of Clustered Solid Building Models Based on Point Cloud)

  • 김한결;황윤혁;이수암
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1349-1365
    • /
    • 2020
  • 최근 스마트 시티, 디지털 트윈 등에 실제 3차원 좌표를 취득할 수 있는 이점에 따라 포인트 클라우드를 이용한 모델 생성에 관한 연구가 늘어나고 있으며, 건물 형상 및 텍스처의 수정이 용이한 솔리드 모델에 대한 요구가 늘어나고 있다. 이에 따라 본 논문에서는 포인트 클라우드 데이터를 기반으로 군집형 솔리드 건물 모델을 생성하는 방법을 제안한다. 제안하는 방법은 총 다섯단계로 구성된다. 첫 단계에서는 포인트 클라우드의 평면성 분석을 통해 지면을 제거하였다. 두 번째 단계에서는 지면이 제거된 포인트 클라우드에서 건물 영역을 추출하였다. 세 번째 단계에서는 건물의 세부 구조물 영역을 추출하였다. 네 번째 단계에서는 추출된 영역에 3차원 좌표정보가 부여된 3차원 건물 모델의 형상을 생성하였다. 마지막 단계에서는 건물 모델 형상에 텍스처를 부여하여 3차원 건물 솔리드 모델을 생성하였다. 제안하는 방법의 검증을 위하여 상용 소프트웨어를 이용해 무인항공기 영상으로부터 포인트 클라우드를 추출하여 실험하였다. 그 결과, 포인트 클라우드 내에 존재하는 일정 높이 이상의 모든 건물에 대하여 포인트 클라우드 대비 위치오차 1 m 내외의 3차원 건물 형상을 생성하고, 원본 영상 해상도 대비 2배 이내의 해상도를 갖는 텍스처링이 수행된 3차원 모델이 생성되는 것을 확인하였다.