• Title/Summary/Keyword: Image tracking system

Search Result 856, Processing Time 0.027 seconds

Real-Time Moving Object Tracking System using Advanced Block Based Image Processing (개선된 블록기반 영상처리기법에 의한 실시간 이동물체 추적시스템)

  • Kim, Dohwan;Cheoi, Kyung-Joo;Lee, Yillbyung
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.333-349
    • /
    • 2005
  • In this paper, we propose a real tine moving object tracking system based on block-based image processing technique and human visual processing. The system has two nun features. First, to take advantage of the merit of the biological mechanism of human retina, the system has two cameras, a CCD(Charge-Coupled Device) camera equipped with wide angle lens for more wide scope vision and a Pan-Tilt-Zoon tamers. Second, the system divides the input image into a numbers of blocks and processes coarsely to reduce the rate of tracking error and the processing time. Tn an experiment, the system showed satisfactory performances coping with almost every noisy image, detecting moving objects very int and controlling the Pan-Tilt-Zoom camera precisely.

  • PDF

Image Change Tracking System (영상 변화 추적 시스템)

  • Park Young-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • This paper introduces a partial edge detection technique, that improves the processing time of an automatic change tracking system for multi-temporal images. In the conventional change tracking systems for multi-temporal images, the edge detection is performed over the whole image. In the proposed method, however, the necessary portions for the edge detection is selected first and the edge detection is performed over the selected parts only. As a consequence, the improvement in the processing time could be achieved. The proposed change tracking system is expected to be utilized as a very efficient tool to configure changes in large data set such as remotely sensed satellite imagery or geophysical time laps images.

  • PDF

Autofocus Tracking System Based on Digital Holographic Microscopy and Electrically Tunable Lens

  • Kim, Ju Wan;Lee, Byeong Ha
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • We present an autofocus tracking system implemented by the digital refocusing of digital holographic microscopy (DHM) and the tunability of an electrically tunable lens (ETL). Once the defocusing distance of an image is calculated with the DHM, then the focal plane of the imaging system is optically tuned so that it always gives a well-focused image regardless of the object location. The accuracy of the focus is evaluated by calculating the contrast of refocused images. The DHM is performed in an off-axis holographic configuration, and the ETL performs the focal plane tuning. With this proposed system, we can easily track down the object drifting along the depth direction without using any physical scanning. In addition, the proposed system can simultaneously obtain the digital hologram and the optical image by using the RGB channels of a color camera. In our experiment, the digital hologram is obtained by using the red channel and the optical image is obtained by the blue channel of the same camera at the same time. This technique is expected to find a good application in the long-term imaging of various floating cells.

Moving Objects Tracking Method using Spatial Projection in Intelligent Video Traffic Surveillance System (지능형 영상 교통 감시 시스템에서 공간 투영기법을 이용한 이동물체 추적 방법)

  • Hong, Kyung Taek;Shim, Jae Homg;Cho, Young Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • When a video surveillance system tracks a specific object, it is very important to get quickly the information of the object through fast image processing. Usually one camera surveillance system for tracking the object made results in various problems such like occlusion, image noise during the tracking process. It makes difficulties on image based moving object tracking. Therefore, to overcome the difficulties the multi video surveillance system which installed several camera within interested area and looking the same object from multi angles of view could be considered as a solution. If multi cameras are used for tracking object, it is capable of making a decision having high accuracy in more wide space. This paper proposes a method of recognizing and tracking a specific object like a car using the homography in which multi cameras are installed at the crossroad.

Real-time Detection and Tracking of Moving Objects Based on DSP (DSP 기반의 실시간 이동물체 검출 및 추적)

  • Lee, Uk-Jae;Kim, Yang-Su;Lee, Sang-Rak;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • This paper describes real-time detection and tracking of moving objects for unmanned visual surveillance. Using images obtained from the fixed camera it detects moving objects within the image and tracks them with displaying rectangle boxes enclosing the objects. Tracking method is implemented on an embedded system which consists of TI DSK645.5 kit and the FPGA board connected on the DSP kit. The DSP kit processes image processing algorithms for detection and tracking of moving objects. The FPGA board designed for image acquisition and display reads the image line-by-line and sends the image data to DSP processor, and also sends the processed data to VGA monitor by DMA data transfer. Experimental results show that the tracking of moving objects is working satisfactorily. The tracking speed is 30 frames/sec with 320x240 image resolution.

A digital filter design applied to the manual tracking system to predict future position (차량의 미래위치 추정을 위한 수동추적 시스템의 디지털 필터 설계)

  • 박용운;강윤식;김상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1332-1335
    • /
    • 1996
  • It is very important to predict the future position for the heavy vehicle with evasive maneuvering. In this paper, we considered for the manual image tracking system. The vehicle images are received from gyro stabilized mirror system, pass through the optical lens, processed, and displayed on the TV monitor. The operator try to lay the reticle to the center of vehicle image. When the vehicle is moving, the mirror platform (actually the line of sight) should follow the vehicle and the angular rate information is picked up from the mirror stabilized system. This rate signal should be used to predict the future vehicle position. The problem is that the visual system of the human operator is in the closed loop system. The rate signals are disturbed by the operator. In addition, there are some non linearities concerned with the control handle bar and the servo control system. The proposed Kalman filter, combined with some modifications for operator disturbance rejection, improved the predication of the future vehicle position when compared with the conventional passive filter used.

  • PDF

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm (평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적)

  • Kim Jong-Hun;Cho Kyeum-Rae;Lee Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.

A algorithm on robot tracking about complex curve with visual sensor (시각센서를 이용한 로보트의 복잡한 곡선추적에 관한 알고리즘)

  • 권태상;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.109-114
    • /
    • 1987
  • In this thesis, we work on the curve recognition with real time processing and the Robot tracking method on recognized curve. Image information of segment curve is supplied to computer to run to a Robot so that it is a feedback system. Image coordinate frame to world coordinate transformation represents in this paper and curve matching algorithm subscribes by two method, first transformation matching algorithm, second image coordinate matching algorithm. Also Robot running time to computer image processing time relationships finally includes.

  • PDF

Efficient Object Tracking System Using the Fusion of a CCD Camera and an Infrared Camera (CCD카메라와 적외선 카메라의 융합을 통한 효과적인 객체 추적 시스템)

  • Kim, Seung-Hun;Jung, Il-Kyun;Park, Chang-Woo;Hwang, Jung-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.

Target Tracking Using Image Features in a Cluttered Environment (클러터환경에서 영상특징을 이용한 표적 추적)

  • Jung, Young-Hun;Kwak, Dong-Min;Kim, Do-Jong;Ko, Jung-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.209-216
    • /
    • 2012
  • In this paper, we propose a novel tracking method which uses image features consisted of the area, average intensity, aspect ratio of a target image for the real-time IR surveillance system. The image features of the ground target can be modeled as a random process with exponential autocorrelation function mathematically. Finally, we derived a discrete target dynamic equation including kinematic states and geometric states of the target. Simulation results shows that the performance of the proposed method is better than that of the previous tracking method.