• Title/Summary/Keyword: Image synthesis technology

Search Result 104, Processing Time 0.033 seconds

Infrared Image Synthesis of Real Background and Target Model (실제 배경과 표적모델의 적외선 영상 합성)

  • Ahn, Sang-Ho;Kim, Young-Choon;Kim, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.207-213
    • /
    • 2013
  • An infrared image synthetic method is proposed for infrared system simulation. The synthesis image uses a background IR image captured from real scene and a target IR modeling image. The radiances related with maximum and minimum temperatures of the background and target images are calculated from the Planck's blackbody equation. Based on them, the background and target images are compensated and synthesized. The proposed method is simulated and the IR target images are generated by RadThermIR software.

A Survey of Image-based Virtual Try-on Technology (이미지 기반 가상 착용 이미지 합성 기술 동향)

  • S.C. Park;J.A. Park;J.Y. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.3
    • /
    • pp.107-115
    • /
    • 2024
  • Image synthesis has been remarkably developed in the computer vision domain and various researches have been proposed to generate realistic and high-resolution images. In particular, image-based virtual try-on is an application in fashion domain to simulate wearing clothes. Specifically, using input images of a fashion model and products, an realistic image of the model wearing the provided garments is synthesized. In this paper, we present a comprehensive review of technical trends in image-based virtual try-on technology. We first introduce relevant datasets and discuss their characteristics. Then, we categorize existing image synthesis methods into three main streams: warping-based methods, encoding-decoding-based methods, and diffusion-based methods. Finally, we explore other important research issues in the field of virtual try-on and analyze related researches aimed to tackling those challenges.

Interaction art using Video Synthesis Technology

  • Kim, Sung-Soo;Eom, Hyun-Young;Lim, Chan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Media art, which is a combination of media technology and art, is making a lot of progress in combination with AI, IoT and VR. This paper aims to meet people's needs by creating a video that simulates the dance moves of an object that users admire by using media art that features interactive interactions between users and works. The project proposed a universal image synthesis system that minimizes equipment constraints by utilizing a deep running-based Skeleton estimation system and one of the deep-running neural network structures, rather than a Kinect-based Skeleton image. The results of the experiment showed that the images implemented through the deep learning system were successful in generating the same results as the user did when they actually danced through inference and synthesis of motion that they did not actually behave.

Scalable Coding of Depth Images with Synthesis-Guided Edge Detection

  • Zhao, Lijun;Wang, Anhong;Zeng, Bing;Jin, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4108-4125
    • /
    • 2015
  • This paper presents a scalable coding method for depth images by considering the quality of synthesized images in virtual views. First, we design a new edge detection algorithm that is based on calculating the depth difference between two neighboring pixels within the depth map. By choosing different thresholds, this algorithm generates a scalable bit stream that puts larger depth differences in front, followed by smaller depth differences. A scalable scheme is also designed for coding depth pixels through a layered sampling structure. At the receiver side, the full-resolution depth image is reconstructed from the received bits by solving a partial-differential-equation (PDE). Experimental results show that the proposed method improves the rate-distortion performance of synthesized images at virtual views and achieves better visual quality.

Patch size adaptive image inpainting

  • Liu, Huaming;Lu, Guanming;Bi, Xuehui;Wang, Weilan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3642-3667
    • /
    • 2021
  • Texture synthesis technology has the advantages of repairing texture and structure at the same time. However, during the filling process, the size of the patch is fixed, and the content of the filling is not fully considered. In order to be able to adaptively change the patch size, we used the exemplar-based inpainting technique as the test algorithm, considering the image structure and texture, calculated the image structure patch size and texture patch size, and comprehensively determined the image patch size. This can adaptively change the patch size according to the filling content. In addition, we use multi-layer images to calculate the priority, so that the order of image repair was more stable. The proposed repair algorithm is compared with other image repair algorithms. The experimental results showed that the proposed adaptive image repair algorithm can better repair the texture and structure of the image, which proved the effectiveness of the proposed algorithm.

Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization

  • Tang, Songze;Zhou, Xuhuan;Zhou, Nan;Sun, Le;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1449-1461
    • /
    • 2019
  • Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.

Image Restoration and Object Removal Using Prioritized Adaptive Patch-Based Inpainting in a Wavelet Domain

  • Borole, Rajesh P.;Bonde, Sanjiv V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1183-1202
    • /
    • 2017
  • Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in of different structures and textures by processing in a wavelet domain. A combination of structure inpainting and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in smooth approximation and high frequency structural details. The subbands are processed separately by the prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm automatically estimates the wavelet coefficients of the target regions of various subbands using optimized patches from the surrounding DWT coefficients. The suggested performance improvement drastically improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying textural complexions.

Disparity Refinement near the Object Boundaries for Virtual-View Quality Enhancement

  • Lee, Gyu-cheol;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2189-2196
    • /
    • 2015
  • Stereo matching algorithm is usually used to obtain a disparity map from a pair of images. However, the disparity map obtained by using stereo matching contains lots of noise and error regions. In this paper, we propose a virtual-view synthesis algorithm using disparity refinement in order to improve the quality of the synthesized image. First, the error region is detected by examining the consistency of the disparity maps. Then, motion information is acquired by applying optical flow to texture component of the image in order to improve the performance. Then, the occlusion region is found using optical flow on the texture component of the image in order to improve the performance of the optical flow. The refined disparity map is finally used for the synthesis of the virtual view image. The experimental results show that the proposed algorithm improves the quality of the generated virtual-view.

Numerical Feasibility Study for a Spaceborne Cooler Dual-function Energy Harvesting System

  • Kwon, Seong-Cheol;Oh, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.579-587
    • /
    • 2017
  • Spaceborne cryocoolers produce undesirable micro-vibration disturbances during their on-orbit operation, which are a primary source of image-quality degradation for high-resolution observation satellites. Therefore, to comply with the strict mission requirement of high-quality image acquisition, micro-vibration disturbances induced by cooler operation have always been subjected to an isolation objective. However, in this study, we focused on the applicability of energy harvesting technology to generate electrical energy from micro-vibration energy of the cooler and investigated the feasibility of utilizing harvested energy as a power source to operate low-power-consumption devices such as micro-electromechanical system (MEMS) devices. A tuned mass damper (TMD)-type electromagnetic energy harvester combined with a conventional passive vibration isolator was proposed to achieve this objective. The system performs the dual functions of electrical energy generation and micro-vibration isolation. The effectiveness of the strategy was evaluated through numerical simulations.

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF