• Title/Summary/Keyword: Image similarity

Search Result 1,064, Processing Time 0.032 seconds

Quality Benchmark of 360 Panoramic Image Generation (360 도 파노라마 영상 생성 기법의 품질 측정 기법 비교)

  • Kim, Soo Jie;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.212-215
    • /
    • 2021
  • 본 논문에서는 6 Fisheye lens 원본 영상에 대하여 Insta360 stitcher, AutoStitch[4], As-Projective-AsPossible(APAP)[5] 스티칭 방법으로 360 도 파노라마 영상을 생성하고 기하학적 왜곡과 컬러 왜곡을 비교 평가한다. 360 도 파노라마 Image Quality Assessment(IQA) 메트릭으로 Natural Image Quality Evaluator(NIQE)[6], Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)[7], Perception based Image Quality Evaluator(PIQE)[8], Feature Similarity(FSIM)[9] 그리고 high frequency feature 에 대한 Structural Similarity(SSIM)[10]을 측정하여 정량적 평가를 하며 정성적인 비교를 통하여 파노라마 영상의 품질과 평가 메트릭에 대한 벤치마크를 제공한다.

  • PDF

A Study on Acoustic Odometry Estimation based on the Image Similarity using Forward-looking Sonar (이미지 쌍의 유사도를 고려한 Acoustic Odometry 정확도 향상 연구)

  • Eunchul Yoon;Byeongjin Kim;Hangil Joe
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.

Extracting Blood Vessels through Similarity Analysis and Intensity Correction (유사도 분석과 명암 보정을 통한 혈관 추출)

  • Jang Seok-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.4
    • /
    • pp.33-43
    • /
    • 2006
  • This paper proposes a method to extract coronary arteries effectively in the angiography, In general. DSA(Digital Subtraction Angiography) is a well-established technique for the visualization of coronary arteries, DSA involves the subtraction of a mask image, an image of a heart before the injection of contrast medium, from a live image, However, this technique is sensitive to the movement of background and can cause wrong detection due to the variance of background intensity between two images. Therefore, this paper solves the structural problem resulted from background movement by selecting an image which has the least difference of movement through the similarity analysis of background texture, and it extracts only the blood vessels effectively through local intensity correction of the selected images, Experimental results show that the proposed method has the lower false-detection rate and higher accuracy rate than existing methods.

  • PDF

AWGN Removal Algorithm using Similarity Determination of Block Matching (블록 매칭의 유사도 판별을 이용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1424-1430
    • /
    • 2020
  • In this paper, we propose an algorithm to remove AWGN by considering the characteristics of noise present in the image. The proposed algorithm uses block matching to calculate the output, and calculates an estimate by determining the similarity between the center mask and the matching mask. The output of the filter is calculated by adding or subtracting the estimated value and the input pixel value, and weighting is given according to the standard deviation of the center mask and the noise constant to obtain the final output. In order to evaluate the proposed algorithm, the simulation was performed in comparison with the existing methods, and analyzed through the enlarged image and PSNR comparison. The proposed algorithm minimizes the effect of noise, preserves important characteristics of the image, and shows the performance of removing noise efficiently.

A Method for Identification of Harmful Video Images Using a 2-Dimensional Projection Map

  • Kim, Chang-Geun;Kim, Soung-Gyun;Kim, Hyun-Ju
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper proposes a method for identification of harmful video images based on the degree of harmfulness in the video content. To extract harmful candidate frames from the video effectively, we used a video color extraction method applying a projection map. The procedure for identifying the harmful video has five steps, first, extract the I-frames from the video and map them onto projection map. Next, calculate the similarity and select the potentially harmful, then identify the harmful images by comparing the similarity measurement value. The method estimates similarity between the extracted frames and normative images using the critical value of the projection map. Based on our experimental test, we propose how the harmful candidate frames are extracted and compared with normative images. The various experimental data proved that the image identification method based on the 2-dimensional projection map is superior to using the color histogram technique in harmful image detection performance.

A study on the estimation of relative shift from aerial image sequences (연속항공영상에서의 상대적 편이 추정에 관한 연구)

  • Hwang, Y.S.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.825-828
    • /
    • 1991
  • This paper addresses estimation of the relative shift vector from aerial image sequences. We perform similarity function tests and decide the most appropriate similarity function for the visual navigation system using aerial images. Finally, we propose the maximum variance reference line selection method for reducing the estimation error of the shift vector.

  • PDF

A Content-Based Image Retrieval using Object Segmentation Method (물체 분할 기법을 이용한 내용기반 영상 검색)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various methods have been studying to maintain and apply the multimedia inform abruptly increasing over all social fields, in recent years. For retrieval of still images, we is implemented content-based image retrieval system in this paper that make possible to retrieve similar objects from image database after segmenting query object from background if user request query. Query image is processed median filtering to remove noise first and then object edge is detected it by canny edge detection. And query object is segmented from background by using convex hull. Similarity value can be obtained by means of histogram intersection with database image after securing color histogram from segmented image. Also segmented image is processed gray convert and wavelet transform to extract spacial gray distribution and texture feature. After that, Similarity value can be obtained by means of banded autocorrelogram and energy. Final similar image can be retrieved by adding upper similarity values that it make possible to not only robust in background but also better correct object retrieval by using object segmentation method.

  • PDF

Digital Watermarking Technique using self-similarity (자기유사성을 이용한 디지털 워터마킹 기법)

  • Lee, Mun-Hee;Lee, Young-hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper. we propose a new digital watermarking technique which uses the self-similarity of OCT(Discrete Cosine Transform) coefficients for the ownership protection of an image, similar coefficients are classified by SOM(Self-Organizing Map) out of Neural Network. The watermark is inserted into the selected cluster among clusters which consist of coefficients. Generally, the inserted watermark in high frequency regions of an image is eliminated by the compression process such as JPEG compressions, and the inserted watermark in low frequency regions of an image causes the distortion of an image quality. Therefore, the watermark is inserted into the cluster that has many coefficients in the middle frequency regions. This algorithm reduces the distortion of an image quality because of inserting the watermark into an image according to the number of coefficients in selected cluster. To extract watermarks from the watermarked image, the selected cluster is used without an original image. In the experiment, the new proposed algorithm have a good quality and endure attacks(JPEG compressions, filtering. zoom in, zoom out, cropping, noises) very well.

  • PDF

Face Sketch Synthesis Based on Local and Nonlocal Similarity Regularization

  • Tang, Songze;Zhou, Xuhuan;Zhou, Nan;Sun, Le;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1449-1461
    • /
    • 2019
  • Face sketch synthesis plays an important role in public security and digital entertainment. In this paper, we present a novel face sketch synthesis method via local similarity and nonlocal similarity regularization terms. The local similarity can overcome the technological bottlenecks of the patch representation scheme in traditional learning-based methods. It improves the quality of synthesized sketches by penalizing the dissimilar training patches (thus have very small weights or are discarded). In addition, taking the redundancy of image patches into account, a global nonlocal similarity regularization is employed to restrain the generation of the noise and maintain primitive facial features during the synthesized process. More robust synthesized results can be obtained. Extensive experiments on the public databases validate the generality, effectiveness, and robustness of the proposed algorithm.

MRI Image Retrieval Using Wavelet with Mahalanobis Distance Measurement

  • Rajakumar, K.;Muttan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1188-1193
    • /
    • 2013
  • In content based image retrieval (CBIR) system, the images are represented based upon its feature such as color, texture, shape, and spatial relationship etc. In this paper, we propose a MRI Image Retrieval using wavelet transform with mahalanobis distance measurement. Wavelet transformation can also be easily extended to 2-D (image) or 3-D (volume) data by successively applying 1-D transformation on different dimensions. The proposed algorithm has tested using wavelet transform and performance analysis have done with HH and $H^*$ elimination methods. The retrieval image is the relevance between a query image and any database image, the relevance similarity is ranked according to the closest similar measures computed by the mahalanobis distance measurement. An adaptive similarity synthesis approach based on a linear combination of individual feature level similarities are analyzed and presented in this paper. The feature weights are calculated by considering both the precision and recall rate of the top retrieved relevant images as predicted by our enhanced technique. Hence, to produce effective results the weights are dynamically updated for robust searching process. The experimental results show that the proposed algorithm is easily identifies target object and reduces the influence of background in the image and thus improves the performance of MRI image retrieval.