• Title/Summary/Keyword: Image semantic segmentation

Search Result 145, Processing Time 0.02 seconds

Implementation of Image Semantic Segmentation on Android Device using Deep Learning (딥-러닝을 활용한 안드로이드 플랫폼에서의 이미지 시맨틱 분할 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.88-91
    • /
    • 2020
  • Image segmentation is the task of partitioning an image into multiple sets of pixels based on some characteristics. The objective is to simplify the image into a representation that is more meaningful and easier to analyze. In this paper, we apply deep-learning to pre-train the learning model, and implement an algorithm that performs image segmentation in real time by extracting frames for the stream input from the Android device. Based on the open source of DeepLab-v3+ implemented in Tensorflow, some convolution filters are modified to improve real-time operation on the Android platform.

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Few-shot Aerial Image Segmentation with Mask-Guided Attention (마스크-보조 어텐션 기법을 활용한 항공 영상에서의 퓨-샷 의미론적 분할)

  • Kwon, Hyeongjun;Song, Taeyong;Lee, Tae-Young;Ahn, Jongsik;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.685-694
    • /
    • 2022
  • The goal of few-shot semantic segmentation is to build a network that quickly adapts to novel classes with extreme data shortage regimes. Most existing few-shot segmentation methods leverage single or multiple prototypes from extracted support features. Although there have been promising results for natural images, these methods are not directly applicable to the aerial image domain. A key factor in few-shot segmentation on aerial images is to effectively exploit information that is robust against extreme changes in background and object scales. In this paper, we propose a Mask-Guided Attention module to extract more comprehensive support features for few-shot segmentation in aerial images. Taking advantage of the support ground-truth masks, the area correlated to the foreground object is highlighted and enables the support encoder to extract comprehensive support features with contextual information. To facilitate reproducible studies of the task of few-shot semantic segmentation in aerial images, we further present the few-shot segmentation benchmark iSAID-, which is constructed from a large-scale iSAID dataset. Extensive experimental results including comparisons with the state-of-the-art methods and ablation studies demonstrate the effectiveness of the proposed method.

EFFICIENT IMAGE SEGMENTATION FOR MANIFESTING VISUAL OBJECTS

  • Park, Hyun-Sang;Lim, Jung-Eun;Ra, Jong-Beom
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.159-164
    • /
    • 1999
  • Homogeneous but distinct visual objects having low-contrast boundaries are usually merged in most of the segmentation algorithms. To alleviate this problem, an efficient image segmentation algorithm based on a bottom-up approach is proposed by using spatial domain information only. For initial image segmentation, we adopt an efficient marker extraction algorithm conforming to the human visual system. Then, two region-merging algorithms are successively applied so that homogeneous visual objects can be represented as simple as possible without destroying low-contrast real boundaries among them. The resultant segmentation describes homogeneous visual objects with few regions while preserving semantic object shapes well. Finally, a size-based region decision procedure may be applied to represent complex visual objects simpler, if their precise semantic contents are not necessary. Experimental results show that the proposed image segmentation algorithm represents homogeneous visual objects with a few regions and describes complex visual objects with a marginal number of regions with well-preserved semantic object shapes.

Semantic Indoor Image Segmentation using Spatial Class Simplification (공간 클래스 단순화를 이용한 의미론적 실내 영상 분할)

  • Kim, Jung-hwan;Choi, Hyung-il
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.33-41
    • /
    • 2019
  • In this paper, we propose a method to learn the redesigned class with background and object for semantic segmentation of indoor scene image. Semantic image segmentation is a technique that divides meaningful parts of an image, such as walls and beds, into pixels. Previous work of semantic image segmentation has proposed methods of learning various object classes of images through neural networks, and it has been pointed out that there is insufficient accuracy compared to long learning time. However, in the problem of separating objects and backgrounds, there is no need to learn various object classes. So we concentrate on separating objects and backgrounds, and propose method to learn after class simplification. The accuracy of the proposed learning method is about 5 ~ 12% higher than the existing methods. In addition, the learning time is reduced by about 14 ~ 60 minutes when the class is configured differently In the same environment, and it shows that it is possible to efficiently learn about the problem of separating the object and the background.

Object Segmentation Using ESRGAN and Semantic Soft Segmentation (ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할)

  • Dongsik Yoon;Noyoon Kwak
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.97-104
    • /
    • 2023
  • This paper is related to object segmentation using ESRGAN(Enhanced Super Resolution GAN) and SSS(Semantic Soft Segmentation). The segmentation performance of the object segmentation method using Mask R-CNN and SSS proposed by the research team in this paper is generally good, but the segmentation performance is poor when the size of the objects is relatively small. This paper is to solve these problems. The proposed method aims to improve segmentation performance of small objects by performing super-resolution through ESRGAN and then performing SSS when the size of an object detected through Mask R-CNN is below a certain threshold. According to the proposed method, it was confirmed that the segmentation characteristics of small-sized objects can be improved more effectively than the previous method.

Survey on Deep Learning-based Panoptic Segmentation Methods (딥 러닝 기반의 팬옵틱 분할 기법 분석)

  • Kwon, Jung Eun;Cho, Sung In
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.209-214
    • /
    • 2021
  • Panoptic segmentation, which is now widely used in computer vision such as medical image analysis, and autonomous driving, helps understanding an image with holistic view. It identifies each pixel by assigning a unique class ID, and an instance ID. Specifically, it can classify 'thing' from 'stuff', and provide pixel-wise results of semantic prediction and object detection. As a result, it can solve both semantic segmentation and instance segmentation tasks through a unified single model, producing two different contexts for two segmentation tasks. Semantic segmentation task focuses on how to obtain multi-scale features from large receptive field, without losing low-level features. On the other hand, instance segmentation task focuses on how to separate 'thing' from 'stuff' and how to produce the representation of detected objects. With the advances of both segmentation techniques, several panoptic segmentation models have been proposed. Many researchers try to solve discrepancy problems between results of two segmentation branches that can be caused on the boundary of the object. In this survey paper, we will introduce the concept of panoptic segmentation, categorize the existing method into two representative methods and explain how it is operated on two methods: top-down method and bottom-up method. Then, we will analyze the performance of various methods with experimental results.

MRU-Net: A remote sensing image segmentation network for enhanced edge contour Detection

  • Jing Han;Weiyu Wang;Yuqi Lin;Xueqiang LYU
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3364-3382
    • /
    • 2023
  • Remote sensing image segmentation plays an important role in realizing intelligent city construction. The current mainstream segmentation networks effectively improve the segmentation effect of remote sensing images by deeply mining the rich texture and semantic features of images. But there are still some problems such as rough results of small target region segmentation and poor edge contour segmentation. To overcome these three challenges, we propose an improved semantic segmentation model, referred to as MRU-Net, which adopts the U-Net architecture as its backbone. Firstly, the convolutional layer is replaced by BasicBlock structure in U-Net network to extract features, then the activation function is replaced to reduce the computational load of model in the network. Secondly, a hybrid multi-scale recognition module is added in the encoder to improve the accuracy of image segmentation of small targets and edge parts. Finally, test on Massachusetts Buildings Dataset and WHU Dataset the experimental results show that compared with the original network the ACC, mIoU and F1 value are improved, and the imposed network shows good robustness and portability in different datasets.

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

Semantic Segmentation of Indoor Scenes Using Depth Superpixel (깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법)

  • Kim, Seon-Keol;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.