• Title/Summary/Keyword: Image recognition technology

Search Result 992, Processing Time 0.024 seconds

Finger Tip Recognition Algorithm in Digital Micromirror System (디지털 마이크로 미러 시스템에서의 손끝 인식 알고리즘)

  • Choi, Jong-ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2016
  • A digital micromirror system was proposed for future smart learning. This system is the compact micro-projector with a built-in CMOS sensor modules. It can provide the various interfaces. The basis of interface is to recognize the finger tip on projected image. But the recognition rate of finger tip is very low due to various image degradations. In this paper, we propose the finger tip recognition algorithm that minimize the image degradation factors by using the Retinex transform and IR structuring light. By verifying the availability of the algorithm through experiment, the performance of finger tip recognition was confirmed. Therefore, the user interface can be able to be enhanced significantly in DMS.

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Detection and Recognition of Vehicle Brake Lights using an R-Filtering (R-필터링을 이용한 자동차 브레이크등 검출과 인식)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2011
  • This paper proposes a new method of vehicle brake lights detection and recognition using an R-filtering. Firstly, the proposed method processes the R-filtering with the first input image and then with the second one in order to detect brake lights. Secondly, the method counts the number of red pixels and computes the mean value in each R-filtered image. The difference rates between the numbers of the red pixels and between the mean values of two images are defined in this paper. Through the analysis of the difference rates, it can recognize whether brake lights are turned on or off, and whether the vehicle ahead is being approached or not. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithm is quite successful.

Development of Wearable Image Watching System based on Gesture Recognition System (제스처 인식 기반 웨어러블 영상시청 시스템 개발)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.4
    • /
    • pp.43-48
    • /
    • 2010
  • The most problematic part in wearable terminals is the display device. To solve these problem, the HMD(Head Mounted Display) is used to wearable terminals. It is a kind of monitor worn like glasses. However, a problem exists in HMD. To select and execute the multimedia contents, it is required to manipulate the key, button, and mouse. These actions are very uncomfortable in HMD. The most fundamental way solving these problems is to develop a new interface. In this paper, we developed the wearable image watching system based on gesture recognition system.

  • PDF

A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image (일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.251-260
    • /
    • 2016
  • Face recognition is a technology to extract feature from a facial image, learn the features through various algorithms, and recognize a person by comparing the learned data with feature of a new facial image. Especially, in order to improve the rate of face recognition, face recognition requires various processing methods. In the training stage of face recognition, feature should be extracted from a facial image. As for the existing method of extracting facial feature, linear discriminant analysis (LDA) is being mainly used. The LDA method is to express a facial image with dots on the high-dimensional space, and extract facial feature to distinguish a person by analyzing the class information and the distribution of dots. As the position of a dot is determined by pixel values of a facial image on the high-dimensional space, if unnecessary areas or frequently changing areas are included on a facial image, incorrect facial feature could be extracted by LDA. Especially, if a camera image is used for face recognition, the size of a face could vary with the distance between the face and the camera, deteriorating the rate of face recognition. Thus, in order to solve this problem, this paper detected a facial area by using a camera, removed unnecessary areas using the facial feature area calculated via a Gabor filter, and normalized the size of the facial area. Facial feature were extracted through LDA using the normalized facial image and were learned through the artificial neural network for face recognition. As a result, it was possible to improve the rate of face recognition by approx. 13% compared to the existing face recognition method including unnecessary areas.

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV (OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식)

  • Kim, Gihong;Chong, Kyusoo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

Robust Minimum Squared Error Classification Algorithm with Applications to Face Recognition

  • Liu, Zhonghua;Yang, Chunlei;Pu, Jiexin;Liu, Gang;Liu, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.308-320
    • /
    • 2016
  • Although the face almost always has an axisymmetric structure, it is generally not symmetrical image for the face image. However, the mirror image of the face image can reflect possible variation of the poses and illumination opposite to that of the original face image. A robust minimum squared error classification (RMSEC) algorithm is proposed in this paper. Concretely speaking, the original training samples and the mirror images of the original samples are taken to form a new training set, and the generated training set is used to perform the modified minimum sqreared error classification(MMSEC) algorithm. The extensive experiments show that the accuracy rate of the proposed RMSEC is greatly increased, and the the proposed RMSEC is not sensitive to the variations of the parameters.

An Efficient Deep Learning Based Image Recognition Service System Using AWS Lambda Serverless Computing Technology (AWS Lambda Serverless Computing 기술을 활용한 효율적인 딥러닝 기반 이미지 인식 서비스 시스템)

  • Lee, Hyunchul;Lee, Sungmin;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.6
    • /
    • pp.177-186
    • /
    • 2020
  • Recent advances in deep learning technology have improved image recognition performance in the field of computer vision, and serverless computing is emerging as the next generation cloud computing technology for event-based cloud application development and services. Attempts to use deep learning and serverless computing technology to increase the number of real-world image recognition services are increasing. Therefore, this paper describes how to develop an efficient deep learning based image recognition service system using serverless computing technology. The proposed system suggests a method that can serve large neural network model to users at low cost by using AWS Lambda Server based on serverless computing. We also show that we can effectively build a serverless computing system that uses a large neural network model by addressing the shortcomings of AWS Lambda Server, cold start time and capacity limitation. Through experiments, we confirmed that the proposed system, using AWS Lambda Serverless Computing technology, is efficient for servicing large neural network models by solving processing time and capacity limitations as well as cost reduction.