• 제목/요약/키워드: Image quality measurement

Search Result 435, Processing Time 0.029 seconds

Objective Image Quality Metric for Block-Based DCT Image Coder Using Structural Distortion Measurement (구조적 왜곡특성 측정을 이용한 블록기반 DCT 영상 부호화기의 객관적 화질평가)

  • Chung Tae-Yun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.434-441
    • /
    • 2003
  • This paper proposes a new quantitative and objective image quality metric which is essential to verify the performance of block-based DCT image coding. The proposed metric considers not only global distortion of coded image such as spatial frequency sensitivity and channel masking using HVS based multi-channel model, but also structural distortions caused block-based coding. The experimental results show a strong correlation between proposed metric and subjective metric.

Objective Image Quality Metric for Block-Based DCT Image Coder-using Structural Distortion Measurement (구조적 왜곡특성 측정을 이용한 블록기반 DCT 영상 부호화기의 객관적 화질평가)

  • Jeong, Tae Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.434-434
    • /
    • 2003
  • This paper proposes a new quantitative and objective image quality metric which is essential to verify the performance of block-based DCT image coding The proposed metric considers not only global distortion of coded image such as spatial frequency sensitivity and channel masking using HVS based multi-channel model, but also structural distortions caused block-based coding. The experimental results show a strong correlation between propose(B metric and subjective metric.

A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology (삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구)

  • Yoon, Myeong-Seong;Hong, Soon-Min;Heo, Yeong-Cheol;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.

The Compensation of Machine Vision Image Distortion

  • Chung, Yi-Chan;Hsu, Yau-Wen;Lin, Yu-Tang;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.68-84
    • /
    • 2004
  • The measured values of a same object should remain constant regardless of the object's position in the image. In other words, its measured values should not vary as its position in the image changes. However, lens' image distortion, heterogeneous light source, varied angle between the measuring apparatus and the object, and different surroundings where the testing is set up will all cause variation in the measurement of the object when the object's position in the image changes. This research attempts to compensate the machine vision image distortion caused by the object's position in the image by developing the compensation table. The compensation is accomplished by facilitating users to obtain the correcting object and serves the objective of improving the precision of measurement.

Confocal Scanning Microscopy with Multiple Optical Probes for High Speed 3D Measurements and Color Imaging (고속 3차원 측정 및 칼라 이미징을 위한 다중 광탐침 공초점 주사 현미경)

  • Chun, Wan-Hee;Lee, Seung-Woo;Ahn, Jin-Woo;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Confocal scanning microscopy is a widely used technique for three dimensional measurements because it is characterized by high resolution, high SNR and depth discrimination. Generally an image is generated by moving one optical probe that satisfies the confocal condition on the specimen. Measurement speed is limited by movement speed of the optical probe; scanning speed. To improve measurement speed we increase the number of optical probes. Specimen region to scan is divided by optical probes. Multi-point information each optical probe points to can be obtained simultaneously. Therefore image acquisition speed is increased in proportion to the number of optical probes. And multiple optical probes from red, green and blue laser sources can be used for color imaging and image quality, i.e., contrast, is improved by adding color information by this way. To conclude, this technique contributes to the improvement of measurement speed and image quality.

  • PDF

A Method of Stereoscopic 3D Image Quality Assessment (스테레오스코픽 3D영상 화질 평가 방법)

  • Park, Young-Soo;Hur, Nam-Ho;Pyo, Kyung-Soo;Song, Chung-Kun
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.319-330
    • /
    • 2011
  • For objective assessment of stereoscopic 3D image quality, we measure quality of left and right image with 2D image quality measurement method. However, this method is inconvenient because that we have to measure quality of left and right image individually. Therefore we propose a method of stereoscopic 3D image quality assessment using one overlaid image with left and right image. Using this method, One can measure quality of stereoscopic 3D image more easily and quickly.

Quality Measurement of Deburring Product using Image Processing (화상처리를 이용한 디버링 가공물의 품질 측정)

  • 송무건;백재용;신관수;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.119-124
    • /
    • 2001
  • In this study, a vision system with image processing method have been introduced to find the edge radius of curvature. It was applied to inspect the edge quality of the deburring process product with brush grinding. Size of data was found to be critical in calculating the radius of curvature. Results using laser measurement system were compared.

  • PDF

Statistical Analysis on the Measurement of the Image Quality of G3 facsimile (국내 G3 팩시밀리 화상품질에 관한 통계 분석)

  • Lee, Sung Duck;Kwon, Sehyg
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • Two user groups, expert and non-expert, are sampled to measure the image quality of G3 facsimile. A ITU-TS tset chart No. 2 has been transmitted among some selected cities and evaluated by user groups. Their subjective evaluation to the image quality is quantified by Mean Opinion Score method. There is highly significant difference in the image quality between expert and non-expert. From modified logit model, it is concluded that there is no significance in two considered factors, the effects of the number of links and transmission time. The derived percent curves show that 80% of non-experts(90% of expert) is considering the image quality of G3 facsimile "fair, good, or excellent".

  • PDF

Accurate Camera Self-Calibration based on Image Quality Assessment

  • Fayyaz, Rabia;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.2
    • /
    • pp.41-52
    • /
    • 2018
  • This paper presents a method for accurate camera self-calibration based on SIFT Feature Detection and image quality assessment. We performed image quality assessment to select high quality images for the camera self-calibration process. We defined high quality images as those that contain little or no blur, and have maximum contrast among images captured within a short period. The image quality assessment includes blur detection and contrast assessment. Blur detection is based on the statistical analysis of energy and standard deviation of high frequency components of the images using Discrete Cosine Transform. Contrast assessment is based on contrast measurement and selection of the high contrast images among some images captured in a short period. Experimental results show little or no distortion in the perspective view of the images. Thus, the suggested method achieves camera self-calibration accuracy of approximately 93%.

Reconstruction of Transmitted Frames for Visual Quality Assessment of Streaming Video (스트리밍 비디오 화질 평가를 위한 수신 영상 복원)

  • Park, Su-Kyung;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.32-40
    • /
    • 2009
  • In this paper, we proposed an reconstruction algorithm of transmitted frames from displayed image on video terminal. For image quality assessment of the video streaming in the wireless network, we need information of the image that is transmitted to the end-user's device. Generally, subjective methods are widely used to evaluate the image quality by human beings because it is difficult to extract the transmitted image from the end-user's device. This paper presents an image reconstruction algerian based on the displayed image in video terminal for the extraction of the transmitted image. In the proposed method, we acquired the displayed image on video terminal using the camera. Camera-acquired images exhibit geometric and color distortions caused by characteristics of cameras and display devices. Therefore we correct the geometric distortion by exploiting the homography and color distortion by pre-computed look-up table. The experimental results show that the proposed measurement system yields promising estimation performance in terms of PSNR of $27{\sim}28dB$. We also carried out performance evaluation of the proposed method in terms of EPSNR and the quality of the estimated images by the proposed algerian was in fairly good range of MOS test scale.