• Title/Summary/Keyword: Image processing. Gaussian noise

Search Result 122, Processing Time 0.031 seconds

An Improved Adaptive Weighted Filter for Image Restoration in Gaussian Noise Environment (가우시안 잡음환경에서 영상복원을 위한 개선된 적응 가중치 필터)

  • Yinyu, Gao;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.623-625
    • /
    • 2012
  • The restoration of an image corrupted by Gaussian noise is an important task in image processing. There are many kinds of filters are proposed to remove Gaussian noise such as Gaussian filter, mean filter, weighted filter, etc. However, they perform not good enough for denoising and edge preservation. Hence, in this paper we proposed an adaptive weighted filter which considers spatial distance and the estimated variance of noise. We also compared the proposed method with existing methods through the simulation and used MSE(mean squared error) as the standard of judgement of improvement effect.

  • PDF

Modified Gaussian Filter Algorithm using Quadtree Segmentation in AWGN Environment (AWGN 환경에서 쿼드트리 분할을 사용한 변형된 가우시안 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1176-1182
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, automation, and unmanned work are progressing in various fields, and the importance of image processing, which is the basis of AI object recognition, is increasing. In particular, in systems that require detailed data processing, noise removal is used as a preprocessing step, but the existing algorithm does not consider the noise level of the image, so it has the disadvantage of blurring in the filtering process. Therefore, in this paper, we propose a modified Gaussian filter that determines the weight by determining the noise level of the image. The proposed algorithm obtains the noise estimate for the AWGN of the image using quadtree segmentation, determines the Gaussian weight and the pixel weight, and obtains the final output by convolution with the local mask. To evaluate the proposed algorithm, it was simulated compared to the existing method, and superior performance was confirmed compared to the existing method.

Performance Analysis of Modified LLAH Algorithm under Gaussian Noise (가우시안 잡음에서 변형된 LLAH 알고리즘의 성능 분석)

  • Ryu, Hosub;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.901-908
    • /
    • 2015
  • Methods of detecting, describing, matching image features, like corners and blobs, have been actively studied as a fundamental step for image processing and computer vision applications. As one of feature description/matching methods, LLAH(Locally Likely Arrangement Hashing) describes image features based on the geometric relationship between their neighbors, and thus is suitable for scenes with poor texture. This paper presents a modified LLAH algorithm, which includes the image features themselves for robustly describing the geometric relationship unlike the original LLAH, and employes a voting-based feature matching scheme that makes feature description much simpler. Then, this paper quantitatively analyzes its performance with synthetic images in the presence of Gaussian noise.

Switching Filter Algorithm using Fuzzy Weights based on Gaussian Distribution in AWGN Environment (AWGN 환경에서 가우시안 분포 기반의 퍼지 가중치를 사용한 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.207-213
    • /
    • 2022
  • Recently, with the improvement of the performance of IoT technology and AI, automation and unmanned work are progressing in a wide range of fields, and interest in image processing, which is the basis of automation such as object recognition and object classification, is increasing. Image noise removal is an important process used as a preprocessing step in an image processing system, and various studies have been conducted. However, in most cases, it is difficult to preserve detailed information due to the smoothing effect in high-frequency components such as edges. In this paper, we propose an algorithm to restore damaged images in AWGN(additive white Gaussian noise) using fuzzy weights based on Gaussian distribution. The proposed algorithm switched the filtering process by comparing the filtering mask and the noise estimate with each other, and reconstructed the image by calculating the fuzzy weights according to the low-frequency and high-frequency components of the image.

Implementation of Deep CNN denoiser for Reducing Over blur (Over blur를 감소시킨 Deep CNN 구현)

  • Lee, Sung-Hun;Lee, Kwang-Yeob;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1242-1245
    • /
    • 2018
  • In this paper, we have implemented a network that overcomes the over-blurring phenomenon that occurs when removing Gaussian noise. In the conventional filtering method, blurring of the original image is performed to remove noise, thereby eliminating high frequency components such as edges and corners. We propose a network that reducing over blurring while maintaining denoising performance by adding denoised high frequency components to denoisers based on CNN.

A study on image area analysis and improvement using denoising technique

  • Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.544-547
    • /
    • 2021
  • Recently, various display products are being applied to automobiles. In the process of acquiring an image from a display product, a large amount of additive white Gaussian noise(AWGN) is generated. Generally known denoising techniques focus on removing noise, so detailed components including image information are proportionally lost in the process of removing noise. The algorithm proposed in this paper proposes a method to effectively remove noise while preserving the detail of image information.

A Study on AWGN Removal using Edge Detection (에지 검출을 이용한 AWGN 제거에 관한 연구)

  • Kwon, Se-Ik;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.956-958
    • /
    • 2016
  • Currently, image processing has been widely utilized and the noise may be occurred in the processes of image data transmission, processing, and storage. The studies have been actively conducted to eliminate the added noise in the image. The types of noise in the image are various depending on the causes and the forms, and additive white Gaussian noise(AWGN) is the representative one. The algorithm to apply and process the weighted value was suggested by the directions of the pixel in the local mask using edge detection to relieve the added AWGN in the image in this article.

  • PDF

A Study on Image Restoration in Gaussian Noise Environment (가우시안 잡음환경하에서 영상복원에 관한 연구)

  • Seo, Hyun-Soo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.205-208
    • /
    • 2007
  • Due to the development and wide use of digital multimedia broadcasting (DMB) and Wireless Broadband Internet (WiBro), the digital contents industry using images has been progressed. Therefore, the image processing has been applied in a variety of fields and in order to transmit and conserve accurate information, the degradation phenomenon for images should be removed. As a representative cause of the degradation phenonenon, noise has become known and Gaussian noise occurs in the process of transmission. Diverse researches for Gaussian noise removal have been implemented and a great number of algorithms have been proposed until now. In this paper, for mage restoration an algorithm using the adaptive threshold value is proposed in Gaussian noise environment and the threshold value is established by using the histogram of edge image. And from simulation results, the noise removal performance of the proposed method is proven using mean square error (MSE) and peak signal to noise ratio (PSNR).

  • PDF

Image Restoration Algorithm Considering Pixel Distribution in AWGN Environments (AWGN 환경에서 화소 분포를 고려한 영상복원 알고리즘)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1687-1693
    • /
    • 2015
  • Recently, demand for digital image processing devices increases rapidly, more clear images have been required. But, in the process of digital image acquisition, processing and transmission, image degradation occurs due to various external reasons and researches about noise reduction are on the rise. Therefore, this study suggested the algorithm to process AWGN(additive white Gaussian noise) by separately processing as three levels according to the pixel distribution in the mask in order to remove AWGN(additive white Gaussian noise) which is added in the image. Regarding the processed results by applying Barbara images which were damaged by AWGN(σ = 15), suggested algorithm showed the improvement by 2.87[dB], 2.95[dB], 2.88[dB], 1.52[dB], 1.49[dB], 1.58[dB] and 1.25[dB] respectively compared with the existing MF(5 × 5), A-TMF(5 × 5), AWMF(5 × 5), MF(3 × 3), A-TMF(3 × 3), AWMF(3 × 3), GF(5 × 5).

A Filter Algorithm using Standard Deviation in AWGN Environment (AWGN 환경에서 표준편차를 이용한 필터 알고리즘)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.936-939
    • /
    • 2015
  • Recently, the image processing is utilized in various fields and many studies on the image restoration have been carried out in order to remove the noise occurring in the process of data transmission, processing and storage. There are many types of noises added to the image according to the cause and shape, and AWGN(additive white Gaussian noise) is one of typical noises. This paper proposed an algorithm which applies the weighting of filter differently according to the standard deviation in order to alleviate AWGN added to the image, and compared this algorithm with the current methods using PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF