• Title/Summary/Keyword: Image processing device

Search Result 497, Processing Time 0.023 seconds

Design for a Defective Product Inspection Device for the Curved Glass used in Smart-phones (스마트폰 곡면 강화유리의 불량품 검사장치 설계)

  • Kim, Han-Sol;Lee, Kyung-Jun;Jung, Dong-Yean;Lee, Yeon-Hyeong;Park, Jea-Hyun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.794-800
    • /
    • 2015
  • This paper describes the design for a defective product inspection device for the curved glass used in smart-phone. Cameras are used as inspection devices to find cracks in LCDs (Liquid Crystal Displays), PDPs (Plasma Display Panels), etc. The devices used to inspect the curved glass used in smart-phone consist of a camera, two back-light apparatus, an inspection apparatus main body, and an image processing program. Camera image calibration was performed to smooth an image taken with the camera, and as a result, the average error was less than 0.12 pixels. And the image of a smart-phone's curved glass taken with the camera was processed using the produced program. As a result, the program could correctly extract the cracks on the curved glass. Thus, it is thought that the designed inspection device can successful detect cracks in curved tempered glass.

The Development of Visual Inspection for Length Measurement of Injection Product Using Vision System (Vision System을 이용한 사출제품의 길이 측정용 시각검사 System 개발)

  • J.Y. Kim;B.S. Oh;S. You
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.126-134
    • /
    • 1997
  • In this study, We made visual inspection system using Vision Board. It is consist of an illuminator (a fluorescent lamp), image input device (CCD (Charge-Coupled Device) camera), image processing system(Vision Board(FARAMVB-02)), image output device (video monitor, printer), and a measuring instrument(TELMN1000). Length measurement by visual inspection system make use of 100mm guage block(instead of calculating distance between a camera and a object). It measured horizontal and vertical length factor from 400mm to 650mm by increasing 50mm. In this place, measured horizontal and vertical length factor made use of length measure- ment of a injection. A measuring instrument used to ompare a measured length of a injection visual inspection system with it. In conclusion, length measurement of a injection compared a measuring instrument with visual inspecion system using length factor of 100mm gauge block. We find that maximum error of length is 0.55mm when it compar with the measuring value of two devices(FARAMVB-02, TELMN1000). Program of visual inspection system is made up Borland C++3.1.

  • PDF

The software configuration management system for image processing algorithm development (영상처리 알고리즘 개발을 위한 소프트웨어형상관리시스템)

  • Lee Jeong-Heon;Chae Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.1-8
    • /
    • 2005
  • The importance of software is getting high in development of the digital device (digital camcoder, digital camera, mp3 player, ....). And because the sire of software becomes larger and complicated, the necessity of software configuration management (to solves a software crisis) is increased. The general software configuration management system shows lack of the property and features of software development environment for image processing algorithm due to its wide range to be covered. Image processing algorithm development environment has properties like repetitive analysis and simulation using visual programming environment where, beside support of elementary development functions. component(or library) can be combined and tested interactively. Moreover, the method to look fast and effectively for component having similar function is required. In this paper, we present the system which supports the software configuration management method for a simulation tool and the property in the visual programming environment. And we relate our system to real simulation tool so as to check its ability as the software configuration management system for image processing algorithm development environment.

The Tracing Algorithm for Center Pixel of Character Image and the Design of Neural Chip (문자영상의 중심화소 추적 알고리즘 및 신경칩 설계)

  • 고휘진;여진경;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.35-43
    • /
    • 1992
  • We have presented the tracing algorithm for center pixel of character image. Character image was read by scanner device. Performing the tracing process, it can be possible to detect feature points, such as branch point, stroke of 4 directions. So, the tracing process covers the thinning and feature point detection process for improving the processing time. Usage of suggested tracing algorithm instead of thinning that is the preprocessing of character recognition increases speed up to 5 times. The preprocessing chip has been designed by using single layer perceptron algorithm.

  • PDF

Development of Multi-functional Laser Pointer Mouse Through Image Processing (영상처리를 통한 다기능 레이저 포인터 마우스 개발)

  • Kim, Yeong-Woo;Kim, Sung-Min;Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1168-1172
    • /
    • 2011
  • Beam projector is popularly used for presentation. In order to pay attention to local area of the beam projector display, a laser pointer is used together with a pointing device(Mouse). Simple wireless presenter has limited functions of a pointing device such as "go to next slide" or "back to previous slide" in a specific application(Microsoft PowerPoint) through wireless channel; thus, there is inconvenience to do other tasks e.g., program execution, maximize/minimize window etc. provided by clicking mouse buttons. The main objective of this paper is to implement a multi-functional laser-pointer mouse that has the same functions of a computer mouse. In order to get position of laser spot in the projector display, an image processing to extract the laser spot in the camera image is required. In addition, we propose a transformation of the spot position into computer display coordinates to execute mouse functions on computer display.

A Method of Wood Section Measuring and the Image Calibration Using Line Laser (Line Laser 를 이용한 목재단면 측정 및 영상보정 방법)

  • Kim, Gi Hwan;Park, Min Su;Kim, Do Yeop;Lee, Suk Yong;Lee, Eung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.641-646
    • /
    • 2016
  • The best method of measuring wood diameter is a contact-type device: however, obtaining an accurate result can be problematic under certain circumstances. In this study, we used a laser beam and a CCD camera that did not require contact with wood. The wood is illuminated by the laser beam, and the CCD camera captures this illumination. The measurement results were determined by processing of the captured image sequences. This paper explains the use of image processing and laser systems for measurement of wood under circumstances in which physical contact is impossible.

A STUDY ON PUPIL DETECTION AND TRACKING METHODS BASED ON IMAGE DATA ANALYSIS

  • CHOI, HANA;GIM, MINJUNG;YOON, SANGWON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.327-336
    • /
    • 2021
  • In this paper, we will introduce the image processing methods for the remote pupillary light reflex measurement using the video taken by a general smartphone camera without a special device such as an infrared camera. We propose an algorithm for estimate the size of the pupil that changes with light using image data analysis without a learning process. In addition, we will introduce the results of visualizing the change in the pupil size by removing noise from the recorded data of the pupil size measured for each frame of the video. We expect that this study will contribute to the construction of an objective indicator for remote pupillary light reflex measurement in the situation where non-face-to-face communication has become common due to COVID-19 and the demand for remote diagnosis is increasing.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

A study on the Image processing method for the Measurements of Spray characteristics (분무특성 파악을 위한 이미지 프로세싱 기법 연구)

  • Jeon, Jae-Hyoung;Kim, Tae-Young;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.85-88
    • /
    • 2010
  • It is essential to understand the spray characteristics of injectors for the development of liquid rocket engine systems. In this study, the image processing methods for the measurement of the spray characteristics such as spray angle, breakup length and drop size of Gas-Centered Swirl Coaxial(GCSC) injectors have been investigated. The charge-coupled device (CCD) camera with a stroboscope was used to capture the spray images. It is to be hoped that this methods could contribute to acquisition of reliable and worthwhile data for the design of injectors. Moreover, this image processing method will be verified by comparison with other experimental results.

  • PDF

Development of Thermal Image System Based Multi-Core Image Processor (멀티코어 이미지 프로세서 기반 열화상 이미지 시스템 개발)

  • Cha, Jeong Woo;Han, Joon Hwan;Park, Chan;Kim, Young Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.2
    • /
    • pp.25-30
    • /
    • 2020
  • The thermal image system was widely used in the defence-related industry because of detect infrared light from the object without light. but, as the demand in the security system and automobile market increases, the civilian industry are expanding to the private sector. There are difficult to apply various requirement because of previous systems are based by FPGA, so it need new system that apply to various requirement. The proposed paper is thermal image processing system using common image processor. It has various requirement and scalable to support image input/output interface and device driver. If it is used to proposed system, it reduce development cost and period than previous system based FPGA. Because there has very high accessibility. In addition, it expect to have satisfaction of customer requirements, development cost, development period, release date of product.